Gou, H. and Zhou, J. and Koopialipoor, M. and Armaghani, D. J. and Tahir, M. M. (2021) Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Engineering with Computers, 37 (1). ISSN 0177-0667
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s00366-019-00816-y
Abstract
A wide variety of artificial intelligence methods have been utilized in the prediction of flyrock induced by blasting. This study focuses on developing a model based on deep neural network (DNN) which is an advanced version of artificial neural network (ANN) for the prediction of flyrock based on the data obtained from the Ulu Thiram quarry that is located in Malaysia. To evaluate and document the success and reliability of the new DNN model, an ANN model based on five different data categories from the established database, was also developed and then compared with the DNN model. Based on the obtained results [i.e. coefficient of determination (R2) = 0.9829 and 0.9781, root mean square error (RMSE) = 8.2690 and 9.1119 for DNN and R2 = 0.9093 and 0.8539, RMSE = 19.0795 and 25.05120 for ANN], a significant increase in predicting flyrock is achieved by developing this DNN predictive model. Then, the DNN model was selected as a function for optimizing flyrock by a powerful optimization technique namely whale optimization algorithm (WOA). The WOA was able to minimize the flyrock resulting from blasting and provide a suitable pattern for blasting operations in mines.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | artificial neural network, deep neural network, flyrock |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | Civil Engineering |
ID Code: | 95485 |
Deposited By: | Narimah Nawil |
Deposited On: | 31 May 2022 12:45 |
Last Modified: | 31 May 2022 12:45 |
Repository Staff Only: item control page