Adli, Reza Ghaffari and Kianvash, Abbas and Hosseini, Mir Ghasem and Hajalilou, Abdollah and Abouzari-Lotf, Ebrahim (2019) Facile and scalable synthesis of ultrafine MnCo2O4 nanoparticles via mechanical alloying as supercapacitive materials. JOM, 71 (7). pp. 2396-2404. ISSN 1047-4838
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s11837-019-03486-9
Abstract
The possibility of synthesizing MnCo2O4 nanoparticles from MnCl2·4H2O and CoCl2·6H2O via mechanical alloying was investigated and sampled after 1, 2, 3, and 4 h of milling. X-ray diffraction (XRD) analysis showed that the initial materials were changed to MnCo2O4 after 1 h of milling and calcination. The broadening of the XRD lines showed that MnCo2O4 crystallites were on the order of nanometers. Fourier-transform infrared spectroscopy spectra of the MnCo2O4 samples indicated the cation distribution of Co-O (~ 567 cm−1) and Mn-O (~ 665 cm−1) in octahedral and tetrahedral sites, respectively. The morphology of the samples is spherical, according to field emission scanning electron microscopy results. Electrochemical measurements, including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, were performed to evaluate specific capacitance, cyclic stability, and charge transfer resistance, respectively. The highest capacitance of about 546 F/g and efficiency of 103% were obtained for the 3-h-milled MnCo2O4 sample.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | cation distributions, charge transfer resistance |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | Malaysia-Japan International Institute of Technology |
ID Code: | 88557 |
Deposited By: | Yanti Mohd Shah |
Deposited On: | 15 Dec 2020 02:19 |
Last Modified: | 15 Dec 2020 02:19 |
Repository Staff Only: item control page