Momeni, Ehsan and Armaghani, Danial Jahed and Fatemi, Seyed Alireza and Nazir, Ramli (2018) Prediction of bearing capacity of thin-walled foundation: a simulation approach. Engineering with Computers, 34 (2). pp. 319-327. ISSN 0177-0667
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1007/s00366-017-0542-x
Abstract
In the recent past years, utilization of intelligent models for solving geotechnical problems has received considerable attention. This paper highlights the feasibility of adaptive neuro-fuzzy inference system (ANFIS) for predicting the bearing capacity of thin-walled foundations. For this reason, a data set comprising nearly 150 recorded cases of footing load tests was compiled from literature. Footing width, wall length-to-footing width ratio, internal friction angle, and unit weight of soil were set as inputs of the predictive model of bearing capacity. In addition, a pre-developed artificial neural network (ANN) model was utilized to estimate the bearing capacity of thin-walled foundations. The results recommend the workability of ANFIS in predicting the bearing capacity of thin-walled foundation. The coefficient of determination (R2) results of 0.933 and 0.875, and root mean square error (RMSE) results of 0.075 and 0.048 for training and testing data sets show higher accuracy and efficiency level of ANFIS in estimating bearing capacity of thin-walled spread foundations compared to the ANN model (R2 = 0.710, RMSE = 0.512 for train, R2 = 0.420, RMSE = 0.529 for test). Overall, findings of the study suggest utilization of ANFIS, as a feasible and quick tool, for predicting the bearing capacity of thin-walled spread foundations, though further study is still recommended to enhance the reliability of the proposed model.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | ANN, Bearing capacity |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | Civil Engineering |
ID Code: | 85655 |
Deposited By: | Widya Wahid |
Deposited On: | 07 Jul 2020 05:16 |
Last Modified: | 07 Jul 2020 05:16 |
Repository Staff Only: item control page