Universiti Teknologi Malaysia Institutional Repository

Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system

Farh, H. M. H. and Eltamaly, A. M. and Othman, M. F. (2018) Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system. PloS one, 13 (11). ISSN 1932-6203

[img]
Preview
PDF
3MB

Official URL: http://dx.doi.org/10.1371/journal.pone.0206171

Abstract

Particle Swarm Optimization (PSO) is widely used in maximum power point tracking (MPPT) of photovoltaic (PV) energy systems. Nevertheless, this technique suffers from two main problems in the case of partial shading conditions (PSCs). The first problem is that PSO is a time invariant optimization technique that cannot follow the dynamic global peak (GP) under time variant shading patterns (SPs) and sticks to the first GP that occurs at the beginning. This problem can be solved by dispersing the PSO particles using two new techniques introduced in this paper. The two new proposed PSO re-initialization techniques are to disperse the particles upon the SP changes and the other one is upon a predefined time (PDT). The second problem is regarding the high oscillations around steady state, which can be solved by using fuzzy logic controller (FLC) to fine-tune the output power and voltage from the PV system. The new contribution of this paper is the hybrid PSO-FLC with two PSO particles dispersing techniques that is able to solve the two previous mentioned problems effectively and improve the performance of the PV system in both normal and PSCs. A detailed list of comparisons between hybrid PSO-FLC and original PSO using the two proposed methodologies are achieved. The results prove the superior performance of hybrid PSO-FLC compared to PSO in terms of efficiency, accuracy, oscillations reduction around steady state and soft tuning of the GP tracked.

Item Type:Article
Uncontrolled Keywords:oscillations reduction, hybrid, fuzzy logic controller
Subjects:T Technology > T Technology (General)
Divisions:Malaysia-Japan International Institute of Technology
ID Code:79921
Deposited By: Narimah Nawil
Deposited On:28 Jan 2019 07:01
Last Modified:28 Jan 2019 07:01

Repository Staff Only: item control page