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Abstract

Particle Swarm Optimization (PSO) is widely used in maximum power point tracking

(MPPT) of photovoltaic (PV) energy systems. Nevertheless, this technique suffers from

two main problems in the case of partial shading conditions (PSCs). The first problem is that

PSO is a time invariant optimization technique that cannot follow the dynamic global peak

(GP) under time variant shading patterns (SPs) and sticks to the first GP that occurs at the

beginning. This problem can be solved by dispersing the PSO particles using two new tech-

niques introduced in this paper. The two new proposed PSO re-initialization techniques are

to disperse the particles upon the SP changes and the other one is upon a predefined time

(PDT). The second problem is regarding the high oscillations around steady state, which

can be solved by using fuzzy logic controller (FLC) to fine-tune the output power and voltage

from the PV system. The new contribution of this paper is the hybrid PSO-FLC with two

PSO particles dispersing techniques that is able to solve the two previous mentioned prob-

lems effectively and improve the performance of the PV system in both normal and PSCs. A

detailed list of comparisons between hybrid PSO-FLC and original PSO using the two pro-

posed methodologies are achieved. The results prove the superior performance of hybrid

PSO-FLC compared to PSO in terms of efficiency, accuracy, oscillations reduction around

steady state and soft tuning of the GP tracked.

1. Introduction

In recent years, solar energy represents one of the most important and promising renewable

energy sources. It has a dramatic interest and acts as a strategic goal for many countries; due

to, its clean, environmental friendly and not to mention, an inexhaustible source. In the last

two decades, the leading countries in the photovoltaic (PV) area have focused on improving

the PV system performance by extracting the maximum power especially under partial shad-

ing conditions (PSCs) and reducing the generated energy cost.

Under PSCs, the P-V characteristic contains multiple peaks, which are one global peak

(GP) and many local peaks (LPs) for each shading pattern (SP). Most conventional maximum
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power point tracking (MPPT) techniques failed to track the GP. Whereas, soft computing

techniques based bio-inspired such as Flower Pollination [1], Ant Bee Colony [2, 3], Firefly [4,

5], Ant Colony [6], Cuckoo Search [7], Particle Swarm Optimization (PSO) [7–13], Improved

Bat [14] and S-Jaya [15] algorithms can follow the GP under the same SP. Although numerous

researches [7–13] claimed that original PSO technique could track the GP generally, they

neglected the fact that the SP changes from time to time; hence, the GP’s position and value

also change from time to time. In addition, obvious oscillations around steady state exist with

the original PSO. Therefore, it can be said that PSO can track the GP under the same SP with

undesirable oscillation around steady state. In addition, PSO without certain re-initialization

cannot catch the dynamic GP under time variant SPs. Instead, it sticks to the first GP caught at

the beginning.

To overcome the previous mentioned drawbacks of the original PSO, Jiying et al. [16] pro-

posed PSO combined with incremental conductance (IC) to reduce the steady state oscillations

occurred when PSO is used alone. PSO searches for the GP area; then, IC tracks the GP under

the same SP. Although, Jiying et al. in [16] succeeded in reducing the undesirable steady state

oscillations, they considered that the SP is fixed (time invariant) and therefore, the GP is fixed

too, which is impractical. Whereas, Lian et al. [17] proposed perturb and observe (P&O) com-

bined with PSO (P&O-PSO) technique to track the dynamic GP under time variant SP. P&O

is used to catch the nearest LP and then, PSO is used to follow the dynamic GP. Nevertheless,

obvious oscillations around steady state still exist in addition to the role of PSO which is

ambiguous in the case of GP at the beginning where P&O can track the first peak regardless of

whether it is LP or GP [17]. As a result, different methodologies of PSO re-initialization are

proposed in order to track the dynamic GP. For example, some researches assumed that if the

PV output power changes, the SP also changes [2, 4, 17–19]. Whereas, other researches [1, 6,

20] claimed that the SP will change based on the PV voltage and current variation either

together [1, 20] or individually [6]. Finally, Sundareswaran et al. in [3] discovered that the SP

changes based on the two constraints used in [1, 20] and [2, 4, 18, 19]. All previous methodolo-

gies in [1–4, 6, 17–20], do not guarantee that the SP changes due to either load variation, uni-

form radiations change, or even in uniform conditions. In addition, the SP may change while

the search area may remain unchanged. Therefore, re-initialization of the particles is useless

and may disturb the PV system without the need for that.

Based on the previous literature review, original PSO can track the GP under the same SP

with undesirable oscillation around steady state. In addition, it cannot follow the dynamic GP

under time variant SPs and sticks at the first GP. This paper proposes two new, efficient and

accurate re-initialization methodologies of hybrid PSO-FLC to overcome the two previous

shortcomings of PSO. Hybrid PSO-FLC not only catches the dynamic GP; but it also prevents

the obvious oscillations around steady state when PSO is used individually. To the best of our

knowledge, this research study is counted as the first study which discuss in detail, hybrid

PSO-FLC and PSO with and without the re-initialization of the particles to track the dynamic

GP continuously under time variant SPs. This paper is organized as follows; Section 2

describes the PV system modelling under PSC. Section 3 introduces the dynamic GP extrac-

tion based on hybrid PSO-FLC techniques with new and efficient methodologies of re-initiali-

zation. Section 4 presents and discusses the simulation results. Finally, Section 5 introduces

conclusions and recommendations.

2. Modelling of the photovoltaic system under PSC

Fig 1 shows the modelling of the PV system interconnected to the utility grid, which contains

both the power and control circuits. The power circuit contains the PV array, boost converter
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and three-phase inverter interconnected to the utility grid. Whereas the control circuit

includes PSO-FLC based MPPT and the three-phase inverter controller. Time variant radia-

tions or SPs with three different values and positions of GP are applied. The time variant SPs

are selected to guarantee the occurrence of the three available GP cases (GP at the beginning,

GP at the middle, GP at the end) as shown in Fig 2. Time variant SPs are applied to generate

a GP in different places on the P-V characteristics to see the output response of the hybrid

PSO-FLC to follow the dynamic GP with and without dispersing the particles. Hybrid

PSO-FLC aims to integrate between the merits of PSO and FLC. PSO can initially catch the

dynamic GP under time variant SPs, but FLC cannot do this. On the other hand, FLC works

conditionally to make soft tuning of the GP caught by PSO, which will be discussed in the next

section. In addition, it prevents oscillations around steady state that occur when PSO is used

alone. Co-simulation between M-file and Simulink is used to handle the simulation of the PV

system shown in Fig 1.

Fig 1. Schematic diagram of the PV system grid connected.

https://doi.org/10.1371/journal.pone.0206171.g001

Fig 2. Three different shading patterns of the PV arrays under study.

https://doi.org/10.1371/journal.pone.0206171.g002
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3. Proposed hybrid PSO-FLC technique for dynamic global peak

extraction

PSO is a time invariant MPPT technique. It can catch the GP under the same SP easily and

accurately [7–13]. Once the SP changes, the GP’s position and value change and PSO cannot

follow the new GP without dispersing the particles all over the search area. In addition, oscilla-

tions around steady state exist with PSO. Therefore, certain modifications on PSO is necessary

to be a time variant GP tracking technique and deal with the time variant SP. In addition,

another modification should be proposed to prevent oscillations around steady state. The logic

steps of PSO without dispersing the particles are introduced in [21]. The particle’s velocity

(vik) and position (xik) are updated using the following equations:

xkþ1

i ¼ xki þ vkþ1

i ð1Þ

vkþ1

i ¼ ovki þ c1 � Pbest i þ c2 � Gbest � c3x
k
i ð2Þ

In this paper, hybrid PSO-FLC is proposed to overcome the two previous shortcomings of

PSO. As mentioned before, the integration between PSO and FLC results in the merits of PSO

and FLC being combined together. Initially, PSO catches the initial value of the GP and its ini-

tial Gbest (optimal duty ratio). Then, FLC makes soft tuning of the initial GP caught by PSO,

which prevents oscillations around steady state that occur with PSO alone. Although, FLC can-

not track the GP under PSC, it has many merits such as fast tracking speed, especially in the

case of rapid changing atmospheric conditions, working properly even with an imprecise

input data, fast and accurate convergence, high efficiency in tracking the first peak notwith-

standing whether it is LP or GP compared to the conventional MPPT techniques [22–31]. FLC

has two inputs;
dPPV
dVPV

and D
dPPV
dVPV

� �
i.e. (Err) and (ΔErr) which can be determined from the PV out-

put power and voltage as follows [32]:

Err ¼
PPVðkÞ � PPVðk � 1Þ

VPVðkÞ � VPVðk � 1Þ
ð3Þ

DErr ¼ ErrðkÞ � Errðk � 1Þ ð4Þ

The output from FLC is the required change in the duty ratio (ΔD), hence; the optimal

duty ratio of the boost converter is determined. The FLC block diagram is shown in Fig 3. The

inputs and output membership functions used in the simulation are shown in Fig 4. The varia-

tion step in ΔErr varies from -50 W to 50 W while it varies from -100W to 100W for Err. The

variation step of Err and ΔErr varies from the PV system to another. The membership names

are introduced as follows: Positive Big (PB), Positive Medium (PM), Positive Small (PS),

Zero (ZE), Negative Small (NS), Negative Medium (NM), Negative Big (NB) using basic fuzzy

subset. Once Err and ΔErr are calculated and transferred to the logic variables based on the

Fig 3. FLC block diagram in Simulink.

https://doi.org/10.1371/journal.pone.0206171.g003
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membership functions, the FLC output; ΔD of the boost converter; is estimated in rules. There-

fore, the optimal duty ratio is determined.

The two new, efficient and accurate methodologies of PSO-FLC re-initialization are pro-

posed to deal with the time variant SPs and catch the dynamic GP as follows:

3.1 PSO-FLC re-initialization upon predefined time

As discussed above, PSO can track the GP under the same SP. Once the SP changes, the posi-

tion and value of the GP will also change. Therefore, PSO cannot catch the new GP and nei-

ther can it deal with the time variant SP because it is a time invariant MPPT technique. In

addition, PSO-FLC without dispersing the particles cannot follow the dynamic GP under

time variant SPs. To overcome this problem, the first new methodology of dispersing the

PSO-FLC particles (re-initialization) is proposed upon certain predefined time (PDT) to

make the particles research for the new GP in the whole search area. The PDT for re-initiali-

zation can be set depending on the SP frequency in the installation site. In this paper, the

PDT is set to be 25 Sec (100 iterations). The flowchart of the PSO-FLC re-initialization upon

predefined time is shown in Fig 5 and the logic steps of this methodology are shown in the

following points:

• Step 1 (PSO-FLC initialization parameters): Send the initial duty ratios (particles) [d1(0)

d2(0) d3(0)] to the boost converter of the PV system (objective function) one by one and col-

lect the corresponding powers.

• Step 2 (Updating position and velocity of particles): update each particle’s position and

velocity using the previously mentioned Eqs (1) and (2), respectively and get the new values

of duty ratios [d1(i) d2(i) d3(i)].

• Step 3 (Fitness evaluation): Send the new obtained duty ratios [d1(i) d2(i) d3(i)] to the boost

converter and collect the corresponding power values [P1(i) P2(i) P3(i)]

Fig 4. Membership functions of FLC.

https://doi.org/10.1371/journal.pone.0206171.g004
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Fig 5. Flow chart of PSO-FLC re-initialization upon predefined time.

https://doi.org/10.1371/journal.pone.0206171.g005
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• Step 4 Evaluate the Pbest,i, Gbest and their corresponding particle position (duty ratios). If the

difference between dmax and dmin is less than or equal to 0.01, then go to FLC in the next step

(Step 5); otherwise check if the time is greater than or if equal to PDT go to step 1; otherwise

go to Step 2.

• Step 5 (FLC): Check if the time is greater than or if equal to PDT, go again to Step 1; other-

wise continue with FLC.

3.2 PSO-FLC Re-initialization upon shading pattern change

The second methodology of dispersing the PSO-FLC particles (re-initialization) is proposed

upon SP change. This will enable PSO-FLC to deal with the time variant SPs and follow the

dynamic GP effectively and accurately. This methodology has many merits compared to the

previous methodology such as high generated power captured and accurate re-initialization of

the particles according to the need when SP changes. The flowchart of PSO-FLC re-initializa-

tion upon SP change is shown in Fig 6 and the logic steps of this methodology are shown in

the following points:

• Step 1 (PSO-FLC initialization parameters): Send the initial duty ratios (particles) [d1(0)

d2(0) d3(0)] to the boost converter of the PV system (objective function) one by one and col-

lect the corresponding powers.

• Step 2 (Updating position and velocity of particles): Update each particle position and veloc-

ity using the previous mentioned Eqs (1) and (2), respectively and get the new values of duty

ratio [d1(i) d2(i) d3(i)].

• Step 3 (Fitness evaluation): Send the new obtained duty ratios [d1(i) d2(i) d3(i)] to the boost

converter and collect the corresponding power values [P1(i) P2(i) P3(i)].

• Step 4 Evaluate the Pbest,i, Gbest and their corresponding particle position (duty ratios), then

if the difference between dmax and dmin is less than or equal to 0.01, go to FLC in the next

step (Step 5); otherwise, sense the radiation and temperature and if the SP has changed, go to

Step 1; otherwise go to Step 2.

• Step 5 (FLC): If the SP has changed, go to Step 1; otherwise continue with FLC.

Re-initialization of the PSO-FLC particles must be executed upon the change in SP in order

to succeed in tracking the new GP in a new search area based on the proposed condition as fol-

lows:

Gnew � Gold

Gold
� ε ð5Þ

4. Simulation results and discussion

The proposed hybrid PSO-FLC technique is compared to the original PSO to demonstrate the

former’s more superior performance in tracking the dynamic GP and reducing the steady state

oscillations. The power circuit of the PV system contains the PV array interconnected to the

grid via boost converter and three-phase inverter. Whereas the control circuit contains the

hybrid PSO-FLC algorithm. Three time variant SPs with three different GPs in terms of value

and position are applied consequently. Each SP is applied for 40 Sec. with total simulation

time of 120 Sec. for the three different SPs. The three corresponding GPs are GP at the
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Fig 6. Flow chart of PSO-FLC re-initialization upon SP change.

https://doi.org/10.1371/journal.pone.0206171.g006
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beginning, GP at the middle and GP at the end as shown in Table 1 and Fig 7. The idea behind

that is to study the effectiveness of the proposed hybrid PSO-FLC technique to track the

dynamic GP under time variant SPs.

On the other hand, three different SPs are applied in this study to prove that both PSO and

hybrid PSO-FLC MPPT techniques without re-initialization cannot follow the dynamic GP.

The purpose of re-initialization of PSO or PSO- FLC is to disperse the particles to deal with

the new SP and new position of the GP. As a result, a detailed comparison between PSO and

hybrid PSO-FLC with two new, efficient and accurate proposed methodologies of the particles

re-initialization in addition to the original methodology without the particles re-initialization

are discussed and analyzed as follow:

4.1 PSO-FLC without re-initialization (Case-1)

In this methodology, initialization the particles is executed once at the beginning. The PV sys-

tem response for both PSO and PSO-FLC without re-initialization is introduced as follows:

• Time interval from 0–40 Sec.: Both PSO and PSO-FLC succeeded in tracking the first GP

(54.6 kW) for SP1 as shown in Fig 7A and 7B. However, hybrid PSO- FLC has almost zero

oscillations around steady state and makes soft tuning of the GP tracked compared to PSO

alone.

• Time interval from 40–80 Sec.: The GP’s position and value changed (92.8 kW; GP at the

middle) due to the variation of the SP (SP2). Nevertheless, both PSO and PSO-FLC cannot

track the new GP and stick to the first GP position with a certain power-generated value,

which is not LP or GP (49.6 kW). This means that both PSO and PSO-FLC cannot follow

the dynamic GP upon SP change without the re-initialization of the particles to deal with the

new SP and its new GP.

• Time interval from 80–120 Sec.: In a similarly, the GP’s position and value changed (128.8

kW; GP at the end) as a consequence of the SP change (SP3). Nevertheless, both PSO and

PSO-FLC cannot track the new GP and stick to the first GP position with a certain power-

Table 1. Three shading patterns with three different cases of the GP.

SPs Irradiance

(W/m2)

SP1

(GP at the beginning)

SP2

(GP at the middle)

SP3

(GP at the end)

Methodologies G1 1000 800 1000

G2 300 400 700

G3 200 900 900

PTh
� (kW) 54.6 92.8 128.8

VTh
� (V) 124 257 402

PSO-FLC without re-initialization PAct
�(kW) 54.6 49.6 54.8

VAct
� (V) 124 124 124

Efficiency 100% 53.4% 42.6%

PSO-FLC re-initialization at PDT PAct (kW) 54.6 49.6! 92.8 54.8! 128.8

VAct (V) 124 124! 257 257! 402

Efficiency 100% 53.4%! 100% 42.6%! 100%

PSO-FLC re-initialization at SP change PAct (kW) 54.6 92.8 128.8

VAct (V) 124 257 402

Efficiency 100% 100% 100%

�PTh: Theoretical power; VTh: Theoretical voltage; PAct: Actual power; VAct: Actual voltage

https://doi.org/10.1371/journal.pone.0206171.t001
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Fig 7. The PV output response for time variant SPs. (A) Standalone PSO without re-initialization. (B) Hybrid PSO-FLC

without re-initialization.

https://doi.org/10.1371/journal.pone.0206171.g007
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generated value, which is not LP or GP (54.8 kW). This emphasizes the previous conclusion

that both PSO and PSO-FLC cannot follow the dynamic GP upon SP change without the re-

initialization of the particles to deal with the new SP and its new GP.

Although, hybrid PSO-FLC has a significant reduction of oscillations around steady state

and makes soft tuning of the GP tracked compared to PSO alone, nevertheless, both PSO and

hybrid PSO-FLC must be forced to disperse the particles to search for the new GP of the new

SP occurred. In addition, both PSO and hybrid PSO-FLC without the re-initialization of the

particles cannot track the new GP and stick to the first GP position with a certain power-gen-

erated value. The generated power value is not LP or GP, and equal to a certain power value

related to the first GP duty ratio. Therefore, re-initialization of the particles must be executed

upon one of the two new proposed methodologies of the PSO or hybrid PSO-FLC re-initializa-

tion that will be introduced, discussed and analyzed in the next sections.

4.2 PSO-FLC re-initialization upon predefined time (Case-2)

As discussed above in case-1, PSO and hybrid PSO-FLC techniques without the re-initializa-

tion of the particles cannot track the variant GP and stick to the first GP position with a certain

generated power value. PSO and hybrid PSO-FLC re-initialization upon predefined time

(PDT) represents one of the new and efficient proposed methodologies of dispersing the parti-

cles to search for the new GP of the new SP in a new searching area. The PV system response

of both PSO and PSO-FLC with re-initialization upon PDT (24 Sec.) is summarized as follows:

• Time interval from 0–24 Sec.: Both PSO and hybrid PSO-FLC succeeded in tracking the

first GP (54.6 kW) for SP1 as shown in Fig 8A and 8B. However, hybrid PSO-FLC has zero

almost oscillations around steady state and makes soft tuning of the GP tracked compared to

PSO.

• Time interval from 24–40 Sec.: Re-initialization of PSO and hybrid PSO-FLC upon PDT

(24 Sec.) is carried out for the same SP. Therefore, the PV system works at the same operat-

ing point (54.6 kW).

• Time interval from 40–48 Sec.: The GP’s position and value change (GP at the middle;

92.8 kW) as a consequence of the change in SP (SP2). Nevertheless, both PSO and hybrid

PSO-FLC cannot track the new GP until the re-initialization of PSO and PSO-FLC is

executed.

• Time interval from 48–72 Sec.: Re-initialization of PSO and hybrid PSO-FLC is executed at

the beginning of this interval. Therefore, they succeeded in tracking the new GP (92.8 kW)

at d = 0.43.

• Time interval from 72–80 Sec.: Re-initialization of PSO and hybrid PSO-FLC is carried out

at the beginning of this interval for the same SP. Therefore, the PV system works at the same

operating point (92.8 kW).

• Time interval from 80–96 Sec.: The GP’s position and value change (GP at the end; 129

kW) as a consequence of the change in SP (SP3). Nevertheless, both PSO and PSO-FLC can-

not track the new GP until the re-initialization of PSO and PSO-FLC is executed.

• Time interval from 96–120 Sec.: Re-initialization of PSO and hybrid PSO-FLC is executed

at the beginning of this interval. Therefore, they succeeded to track the new GP of SP3 (129

kW).
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Fig 8. The PV output response for time variant SPs. (A) Standalone PSO re-initialization upon PDT. (B) Hybrid

PSO-FLC re-initialization upon PDT.

https://doi.org/10.1371/journal.pone.0206171.g008
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Under time variant SPs, both PSO and hybrid PSO-FLC re-initialization upon PDT have

many benefits such as simple in implementation, no need for temperature and radiation sen-

sors, avoidance of sensor problems and improvement of the PV system performance. Hybrid

PSO-FLC has outperformed PSO in making fine-tuning of the GP tracked and reducing oscil-

lations around steady state effectively. The unique problem of this new methodology is the

delayed response with the SP change (not simultaneously).

4.3 PSO-FLC re-initialization upon the SP change (Case-3)

In Case-1, PSO and hybrid PSO-FLC techniques without re-initialization cannot track the

dynamic GP under time variant SPs. Whereas a simple methodology is proposed in Case-2 to

disperse the particles (re-initialization) upon PDT and it succeeded in following the dynamic

GP; but, with a delayed response or unwanted re-initialization. Finally, an accurate and effi-

cient methodology (Case-3) is proposed to re-initialize the particles upon SP change to deal

with the time variant SPs and follow the dynamic GP. The PV system response of both PSO

and hybrid PSO-FLC with re-initialization upon SP change is summarized as follows:

• Time interval from 0–40 Sec.: Both PSO and PSO-FLC succeeded to catch the first GP of

SP1 (54.6 kW) as shown in Fig 9A and 9B. Hybrid PSO-FLC reduces the occurrence of oscil-

lations around steady state that is the case with PSO and fine-tune of the GP tracked.

• Time interval from 40–80 Sec.: The GP’s position and value changed (GP at the middle;

92.8 kW) due to the variation of the SP (SP2). Both PSO and PSO-FLC re-initialization upon

the SP change at t = 40 Sec. were carried out and they succeeded in catching the second GP

(92.8 kW) as shown in Fig 9A and 9B.

• Time interval from 40–80 Sec.: In similar, the GP’s position and value is changed GP at the

end; 129 kW) due to the variation of the SP (SP3). Both PSO and PSO-FLC re-initialization

upon the SP change at t = 80 Sec has been carried out and they succeeded to catch the second

GP (129 kW) as shown in Fig 9A and 9B, but PSO-FLC works at GP with almost zero oscilla-

tions as shown in Fig 9B.

Based on the above analysis and discussions, the methodology of dispersing the particles

(re-initialization) upon the SP change represents the most accurate and efficient methodology

to deal with the time variant SP. It overcame the shortcomings of the previous methodologies

where it can track the dynamic GP effectively compared to other proposed methodologies. In

addition, it performed well and the system efficiency improved considerably in all PSCs as

shown in Table 1. Although the radiation sensors will help us to detect the SP change that facil-

itate the re-initialization decision, it will add additional cost to the total costs and system’s dis-

turbance occur during cloudy days.

5. Conclusions

PSO is a time invariant MPPT technique. It can track the GP under the same SP effectively.

Nevertheless, obvious oscillations around steady state exist. In addition, it cannot follow the

dynamic GP under time variant SPs and stick at the first GP position with a certain power-

generated value that is not GP. Therefore, two new proposed methodologies of dispersing the

particles (re-initialization) are implemented with PSO and hybrid PSO-FLC to deal with the

time variant SPs and follow the dynamic GP. Although, PSO and hybrid PSO-FLC with re-ini-

tialization show a more superior performance in dispersing the particles and ability to follow

the dynamic GP under time variant SPs, nevertheless, the re-initialization methodology upon

Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system

PLOS ONE | https://doi.org/10.1371/journal.pone.0206171 November 2, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0206171


Fig 9. The PV output response for time variant SPs. (A) Standalone PSO re-initialization upon SP change. (B)

Hybrid PSO-FLC re-initialization upon SP change.

https://doi.org/10.1371/journal.pone.0206171.g009
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the SP change has outperformed the other re-initialization one upon PDT in terms of tracking

speed, time response, efficiency and accuracy. On the other hand, Hybrid PSO-FLC collects

both the merits of PSO and FLC. The integration purpose between PSO and FLC technique is

not only to follow the dynamic GP but also to reduce the obvious oscillations around steady

state that occur with PSO alone. Hybrid PSO-FLC based GP tracking performs well compared

to PSO in terms of efficiency, accuracy, oscillations reduction around steady state and fine-

tuning of the GP tracked.
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