Mohd. Nor, Nurafifah (2016) Bioremediation of anthracene and remazol brilliant blue R by fungi. Masters thesis, Universiti Teknologi Malaysia, Faculty of Civil Engineering.
|
PDF
289kB |
Official URL: http://dms.library.utm.my:8080/vital/access/manage...
Abstract
Fungi are reported as a potent tool to biodegrade many type of organic pollutants for instance polyaromatic hydrocarbons (PAHs) and synthetic dyes that caused severe pollution to the environment. This research emphasized on biodegradation and biosorption process of PAHs and synthetic dyes; anthracene and Remazol Brilliant Blue R (RBBR) collected from decayed wood and soil. Trichoderma citrinoviride W04, Trichoderma koningiopsis W14 and Pestalotiopsis W15 were selected among twenty fungi species based on faster growth rate after 5 days of incubation. The identification of fungal species was done by morphology characterization and 18S rRNA sequence analysis. According to phylogenetic tree, W04, W14 and W15 were classified as Trichoderma citrinoviride, Trichoderma koningiopsis, and Pestalotiopsis sp. These three fungi species were used further to study the environmental effects; agitation, carbon and nitrogen sources and pH were investigated to choose optimum parameters. Optimization parameters are compulsory to obtain better results. The biodegradation and biosorption process were investigated using UV-Vis spectrophotometer, gas chromatography (GC), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The optimum parameters for RBBR by Pestalotiopsis sp. W15 in this study were glucose (86.7%), yeast (91.9%), agitation condition (71.1%) and pH 5 (88.4%). Meanwhile, Trichoderma koningiospsis W14 had the highest degradation of anthracene and optimum in galactose (55.34%), ammonium chloride (55.2%), agitation (46.8%) and pH 5 (26.2%) culture condition. Isotherm and kinetic studies for RBBR and anthracene showed the adsorption process best fit the Langmuir with R2 of 0.93 and 0.90 with maximum biosorption capacity; 0.17 and 0.78 and followed pseudo second order models with rate constant of 0.19 x 0.1/min and 0.47 x 0.1/min. This result demonstrated that fungi are promising biosorbent material to treat RBBR and anthracene.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | Thesis (Sarjana Kejuruteraan (Alam Sekitar)) - Universiti Teknologi Malaysia, 2016; Supervisors : Dr. Tony Hadibarata, Assoc. Prof. Dr. Mohamad Ali Fulazzaky |
Uncontrolled Keywords: | polyaromatic hydrocarbons (PAHs), synthetic dyes |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | Civil Engineering |
ID Code: | 78848 |
Deposited By: | Widya Wahid |
Deposited On: | 17 Sep 2018 04:21 |
Last Modified: | 17 Sep 2018 04:21 |
Repository Staff Only: item control page