Ting, Chee Ming and Shaikh Salleh, Sheikh Hussain and Tan, Tian Swee and Ariff, Ahmad Kamarul (2007) Text independent speaker identification using gaussian mixture model. In: Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference, 25-28 Nov 2007, Kuala Lumpur, Malaysia.
PDF
Restricted to Repository staff only 393kB |
Official URL: http://dx.doi.org/10.1109/ICIAS.2007.4658373
Abstract
This paper describes text-independent (TI) Speaker Identification (ID) using Gaussian mixture models (GMM). The use of GMM approach is motivated by that the individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for speaker identity modeling. For speaker model training, a fast re-estimation algorithm based on highest likelihood mixture clustering is introduced. In this work, the GMM is evaluated on TI Speaker ID task via series of experiments (model convergence, effect of feature set, number of Gaussian components, and training utterance length on identification rate). The database consisted of Malay clean sentence speech database uttered by 10 speakers (3 female and 7 male). Each speaker provides the same 40 sentences utterances (average length- 3.5s) with different text. The sentences for testing were different from those for training. The GMM achieved 98.4% identification rate using 5 training sentences. The model training based on highest likelihood clustering is shown to perform comparably to conventional expectation-maximization training but consumes much shorter computational time.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | Gaussian mixture model, speaker indentification |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electrical Engineering |
ID Code: | 7637 |
Deposited By: | Norhafizah Hussin |
Deposited On: | 13 Jan 2009 02:57 |
Last Modified: | 01 Jun 2010 15:54 |
Repository Staff Only: item control page