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Abstract— This paper describes text-independent (TI) 
Speaker Identification (ID) using Gaussian mixture models 
(GMM). The use of GMM approach is motivated by that the 
individual Gaussian components of a GMM are shown to 
represent some general speaker-dependent spectral shapes that 
are effective for speaker identity modeling. For speaker model 
training, a fast re-estimation algorithm based on highest 
likelihood mixture clustering is introduced. In this work, the 
GMM is evaluated on TI Speaker ID task via series of 
experiments (model convergence, effect of feature set, number of 
Gaussian components, and training utterance length on 
identification rate). The database consisted of Malay clean 
sentence speech database uttered by 10 speakers (3 female and 7 
male). Each speaker provides the same 40 sentences utterances 
(average length- 3.5s) with different text. The sentences for 
testing were different from those for training. The GMM 
achieved 98.4% identification rate using 5 training sentences. The 
model training based on highest likelihood clustering is shown to 
perform comparably to conventional expectation-maximization 
training but consumes much shorter computational time. 

Keywords— Speaker Indentification, Gaussian Mixture 
Model

I. INTRODUCTION

There are numerous measurements and signals have been 
investigated for the use in biometric systems. Each has its 
advantages and disadvantages in term of accuracy and 
deployment. Speech signal, which conveys information about 
the identity of the speaker, has become compelling in biometric 
area. The advantage of voice biometrics is that firstly, speech is 
a natural signal to produce. Secondly, speech has been used as 
common communication medium in many applications (e.g. 
telephone transaction), so users can provide the signals 
conveniently. Besides, speech data acquisition is low-cost, 
using microphone and existing telephone systems without 
much extra installations.  

Depending on applications, speaker recognition is generally 
divided into two tasks: verification (verifying if a person is 
whom he/she claims by determining whether the input voice is 
from that particular person) and identification (select the 
correct speaker out of a given population, who is best matched 
to the input voice sample). Speaker verification (SV) is 
generally more important than speaker identification (SI) for 
most commercial applications. Besides, the speech input can be 
constrained to be a known phrase or ‘password’ (text-
dependent (TD) systems). These systems consider the temporal 
information of fixed text and are capable of improving the 

accuracy. However TD methods may be inconvenient since the 
password has to be remembered. This method also cannot be 
used when the speaker is uncooperative and when the 
verification is required during the normal conversation. To 
avoid these problems, a more flexible system which able to 
operate without explicit user cooperation and independent of 
spoken utterances (text-independent (TI)) is needed. This paper 
focuses on text-independent speaker identification. 

Many approaches have been proposed for TI speaker 
recognition. First is the VQ based method which uses VQ 
codebooks as an efficient means of characterizing speaker-
specific feature [1]. An input utterance is first vector-quantized 
using the codebook of each reference speaker, and the VQ 
distortion is used for making recognition decision. To better 
modeling the acoustic feature and incorporate the temporal 
structure modeling, the Hidden Markov Models (HMM) have 
been used as probabilistic speaker model for both TI and TD 
tasks. Poritz [2] proposed a five state ergodic HMM, which 
classify acoustic events into broad phonetic categories 
corresponding to HMM states, to characterize each speaker in 
TI task. However, Matsui [3] found that TI performance was 
unaffected by discarding transition probabilities in HMM 
models. 

Rose and Reynolds [4] introduced a methods based on 
Gaussian Mixture Model (GMM) (corresponds to a single state 
continuous ergodic HMM by [3]) to model speaker identity.  
The GMM, on the other hand, provide probabilistic model of 
the underlying acoustic properties of a person but do not 
impose any Markovian constraints between the acoustic classes 
by discarding the transition probabilities in the HMM models. 
The use of GMM for speaker identity modeling is motivated by 
the interpretation that the Gaussian components represent some 
general speaker-dependent spectral shapes and the capability of 
Gaussian mixture to model arbitrary densities. The GMM has 
been firstly used for TI speaker identification [5] and is 
extended to speaker verification on several publicly available 
speech corpora [6]. The GMM was also shown to outperform 
the conventional Vector Quantization (VQ) method and 
discriminative method (Radial Basis Function) in TI speaker ID 
task [5]. 

In this work, GMM approach is investigated for TI speaker 
identification. In speaker model training, expectation-
maximization EM re-estimation algorithm can be used for 
estimating the GMM parameters [5,6]. This paper applies a re-
estimation algorithm based on highest mixture likelihood 
clustering on speaker identification. This algorithm has been 
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proposed by the author [7] to train the GMM models and its 
evaluation on TI- speaker verification task gives convincing 
result on verification rate and model convergence. This paper 
extends the work to speaker identification. The algorithm is an 
iterative process of two steps: (1) cluster the training vectors to 
the mixture component with the highest likelihood and (2) re-
estimate parameters of each component. This process increases 
the likelihood of training data at each iteration. This algorithm 
performs comparably to EM training with much shorter 
computational time, which will shorten the enrollment time. 

The paper is organized as follows. Section 2 describes the 
GMM based speaker identification system. Section 3 present 
the experimental evaluation on the GMM model in term of 
model convergence, effect of feature set, number of Gaussian 
components, and training utterance length on identification 
rate. Conclusion is given in the last section. 

II. GMM SPEAKER IDENTIFICATION SYSTEM

The GMM speaker identification system consists of the 
following elements: speech processing, Gaussian mixture 
model, parameter estimation of GMM speaker model, and 
identification. 

A. Speech Processing 
Most of the front end used in SV systems relies on cepstral 

representation of speech. The Mel-scale Frequency cepstral 
coefficients (MFCC) extraction is used in front-end processing. 
The sampled speech signals are pre-emphasized with filter. 
Then, the waveform is blocked into 15ms-width frames with 
5ms frame rate. Each frame is multiplied by a Hamming 
window. In the process of MFCC extraction, the DFT 
spectrums are filtered by triangular windows, which are 
arranged in Mel-scale (designed to approximate the amplitude 
frequency response of human ear). Next, log compression is 
put on the output of each filter. Finally, Discrete Cosine 
Transform (DCT) is applied to de-correlate feature vector of 
MFCCs. 

B. Gaussian Mixture Model
The Gaussian mixture density used for the likelihood 

function is a weighted linear combination of M uni-model 
Gaussian component densities, defined as follows: 
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Collectively, the parameters of the Gaussian mixture density 
model are denoted as ),,1(),,,( Miw iii =Σ= μλ . Each 
speaker is represented by a GMM and is referred to by his/her 
model (speaker specific model). There are two form of Σ ,
namely diagonal matrices and full covariance matrices .Use of 
diagonal matrices consume less training data and time while 
outperforming empirically full covariance matrices. 

C. GMM Parameters Estimation 
Given training speech, speaker model training is to estimate 

the GMM parameters via maximum likelihood (ML) 
estimation, which maximizes the likelihood of the GMM. For a 
T training vectors pattern X, the likelihood is 
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The ML estimate can be obtained using iterative 
expectation-maximization (EM) algorithm. The EM algorithm 
iteratively refines the GMM parameters to monotonically 
increase the likelihood of the estimated model for a given X, 
i.e. for iterations k and k+1, )|()|( )()1( kk XpXp λλ >+ .
The EM equations for GMM training given as follows can be 
found in [5]. 
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,where 2
iσ , tx , and iμ  refer to arbitrary elements of the 

vectors 2
iσ , tx , and iμ   respectively. ),|( λtxip is a 

posteriori probability for acoustic class i. The iteration is 
repeated until some convergence threshold is reached. 

Careful selection of model initialization is important for the 
optimal model convergence. In this work, VQ clustering 
(involves using Euclidean distortion measures and VQ design 
algorithm –Linde-Bunzo-Gray (LBG) algorithm) is for 
initialization. The LBG algorithm clusters the training vectors 
into a set of M clusters. The vectors in each of the VQ-cluster i
are used to estimate the corresponding m Gaussian mixture 
components. 

This paper proposes an alternative GMM re-estimation 
algorithm based on highest mixture component likelihood 
clustering. The iterative algorithm meets the maximum 
likelihood estimation criterion as the EM algorithm. The 
algorithm consists of two steps as shown in Figure 1: (1) 
cluster the training vectors to the mixture component with the  

(2)
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Figure 1. GMM re-estimation based on highest mixture component 
likelihood clustering. 

highest likelihood, and (2) re-estimate parameters of each 
component. Based on the initialized model, each training vector 
is clustered into regions ),,1(, MiCi = , M is the number 
of mixture components (model order) of GMM. The clustering 
criterion is associating each training vector to the Gaussian 
mixture components i with highest likelihood, such that 

)(maxarg
1
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Each cluster represents one of the M mixture densities. 
Next, the vectors in each of the cluster i are used to estimate the 
corresponding thi  Gaussian mixture components using simple 
averaging estimation derived as follows: 

iw  = number of vectors classified in cluster i / total number 
 of  training vectors. 

iμ  = sample mean of vectors classified in cluster i.

iΣ  = sample covariance matrix of vectors classified in 
 cluster i.

Iteration is repeated until certain convergence criterion is 
met. 

D. Speaker Identification 
For a close set speaker identification, a group of speakers S

with each speaker represented by speaker specific GMM’s 

Tλλλ ,,, 21 . Let a speech signal uttered by an unknown 
speaker, which after front end processing, gives a feature vector 
pattern, X. The feature is classified to the speaker Ŝ , whose 
model likelihood is the highest, in formal term [5], 
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Assume independence between observation vectors the above 
can be formulated in logarithmic term, 
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)|( ktxp λ is given by (1). 

III. EXPERIMENTAL EVALUATION

A. Database and Experiment Conditions 
The database for system evaluation consists of phonetically 

balanced Malay sentences utterances by 7 male and 3 female 
client speakers with each provides the same 40 sentences 
utterances with different text. This database was recorded on 
one session in the same recording room with same microphone 
for all speakers for all sessions. The average sentences duration 
is approximately 3.5 s. A subset of sentences is used for 
training the speaker specific model. The other subset is used for 
testing. The training sentences with different text are same for 
all speakers. The testing sentences were different from those 
for training but same for all speakers. For identification, an 
unknown speech signal which has been transformed into MFC 
feature pattern is classified into speaker whose GMM model 
gives highest likelihood. A series of experiments were 
established to evaluate the systems. 

B. Performance Comparison between EM & Highest Mixture 
Likelihood Clustering Training. 
Performance comparison between speaker model training 

using EM and highest mixture likelihood clustering is 
investigated in term of model convergence and identification 
rate.  

A speaker model with number of Gaussian components 16, 
and 16 dimensional MFCCs was trained using both training 
algorithm to investigate their convergence properties and 
consumed computational time. 20 utterances were used for 
training. The Figure 2 shows the convergence rate of the two 
training algorithms through the total log likelihood per frame of 
the training data at each training iteration. The iteration stops 
when 03.0|)|()|(| )()1( <−+ kk XpXp λλ .The EM 
training gives more optimal convergence at each iteration than 
the highest likelihood clustering and achieves a higher local 
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Figure 2. : Convergence rate of the EM and highest likelihood clustering re-
estimation algorithm. 
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TABLE I. TRAINING DURATION OF EM AND HIGHEST LIKELIHOOD 
CLUSTERING TRAINING.

Training algorithm Training Duration 
EM 9 min 

Highest likelihood clustering 1 min 6 s 

TABLE II. COMPARISON OF EM AND HIGHEST LIKELIHOOD CLUSTERING 
TRAINING ON IDENTIFICATION RATE.

Training algorithm Identification Rate 
EM 95.18% 

Highest likelihood clustering 94.80% 

maxima. The duration of each iteration for EM and highest 
likelihood clustering are 6s and approximate 1min respectively. 
Table 1 shows the training duration of both algorithms. The 
highest likelihood clustering consumes less training time than 
EM training. These results have been reported in [7]. 

Table 2 shows the comparison between EM and highest 
likelihood clustering training on identification rate. 10 
sentences were used for training and 25 sentences were used 
for testing. Two set of speaker models with 4 Gaussian 
components were trained using 8 iterations of both training 
algorithms respectively. The performance of the highest 
likelihood clustering is comparable with the EM training but 
consume less computational time. 

C. Effect of Different Number of Gaussian Mixture 
Components and Amount of Training Data 
No objective way to determine the correct number of 

mixture components (model order) and the model dimension a
priori. For saving the identification time, the objective is to 
choose the minimum number of components necessarily for 
adequate speaker modeling. However, too few components will 
not be able to accurately model the distinguished characteristics 
of a speaker distribution. Too many components relative to 
limited training data induce too many free parameters to be 
estimated reliably, thus degrade performance. Besides, small 
amount of training data is crucial to facilitate client enrolment 
to the system, with the trade-off that the insufficient data 
unable to train the model reliably. 

The following experiment investigates the effect of 
different number of Gaussian mixture components on 
identification rate for different amount of training data. MFCC 
feature dimension is fixed to 12. The speaker models with 
model order varied from 1 to 32, were trained using 5, 10, and 
15 training sentences. 25 sentences of different text from the 
training set were used for testing. Figure 2 shows the 
identification results. 

Generally, for all model order, increasing the amount of 
training data increases the identification rate. For all amount of 
training data, there is a sharp increase in performance from 1 to 
4 components, and start leveling off at 8 components. 
Identification rate peaks at 16 components. This shows that at 
least 8 components are sufficient to fit different acoustic 
categories, and gives better discriminating power to yield high 
performance, for one speaker model. Compared to the 
relatively constant performance, the performance for the small  
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Figure 3. Speaker identification rate versus number of mixture components 
for different amount of training data. 
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Figure 4. Speaker identification rate versus number of mixture components 
for different feature sets. 

amount of training data (5 sentences) drops at 32 mixture 
components. This is because there are too many parameters to 
be estimated reliably with relatively insufficient training data.  

D. Effect of Feature Set on Performance forDifferent 
Number of Gaussian Mixture Components 
The cepstrum difference coefficients are widely used in 

speaker recognition [5, 8]. The use of difference coefficients is 
motivated by its ability to capture dynamic or transitional 
cepstral information. Besides, for speaker recognition this 
feature sets contain channel invariant feature and speaker 
specific information. The difference coefficients are called 
dynamic feature while cepstral coefficients are called static 
feature. The difference coefficients were tested for channel 
compensation for telephone speech on TI speaker identification 
task, and shows improvements [5]. The difference coefficients 
have been shown when used by themselves; do not perform as 
well as static feature. They are normally used in combination 
with static feature by being appended to the static feature 
vectors. 

The following experiments investigate the use of combined 
static and dynamic MFCC features. Combination with first and 
second order difference coefficients was tested.  and 
denotes the first and second order difference coefficient 
respectively. 12 dimensional static features were used. 10 
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Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 12, 2009 at 19:02 from IEEE Xplore.  Restrictions apply.



International Conference on Intelligent and Advanced Systems 2007

198 ~
        

sentences were used for training and 30 sentences were used 
for testing. Figure 4 shows the speaker identification rate 
versus number of mixture components for different feature sets. 
As expected increasing mixture components increase the 
identification rate. The incorporation of first order differences 
coefficients to static outperforms the use of static feature by 
themselves for all number of mixture components. However, 
the incorporation of the first and second order coefficient gain 
not much advantage and even slightly decrease the 
performance with the increase of mixture components, 
compared to merely first order coefficient incorporation. This is 
may be due to the increasing feature parameters dimension 
made the reliable model estimation difficult. These results 
postulate that the use of first order difference coefficients is 
sufficient to capture the transitional information while 
maintaining reasonable dimensional complexity. 

IV. CONCLUSION

A GMM based text-independent speaker identification 
system has been described. This paper extends the use of 
highest mixture likelihood clustering to speaker identification. 
The alternative GMM training algorithm performs comparably 
to conventional EM training but with less computational time. 
Increasing the amount of training data increases the 
identification rate. Experimental result shows that increasing 
the mixture components of the speaker model improves the 
performance, limited by amount of training data. The use of 
first order difference coefficients is sufficient to capture the 
transitional information with reasonable dimensional 
complexity. The 12 dimensional 16 order GMM trained with 
highest mixture likelihood clustering using 5 training sentences 
achieved 98.4% identification rate.  
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