Ting, C. M. and Seghouane, A. K. and Salleh, S. H. (2016) Estimation of high-dimensional connectivity in FMRI data via subspace autoregressive models. In: 19th IEEE Statistical Signal Processing Workshop, SSP 2016, 25 June 2016 through 29 June 2016, Spain.
Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....
Abstract
We consider the challenge in estimating effective connectivity of brain networks with a large number of nodes from fMRI data. The classical vector autoregressive (VAR) modeling tends to produce unreliable estimates for large dimensions due to the huge number of parameters. We propose a subspace estimator for large-dimensional VAR model based on a latent variable model. We derive a subspace VAR model with the observational and noise process driven by a few latent variables, which allows for a lower-dimensional subspace of the dependence structure. We introduce a fitting procedure by first estimating the latent space by principal component analysis (PCA) of the residuals and then reconstructing the subspace estimators from the PCs. Simulation results show superiority of the subspace VAR estimator over the conventional least squares (LS) under high-dimensional settings, with improved accuracy and consistency. Application to estimating large-scale effective connectivity from resting-state fMRI shows the ability of our method in identifying interesting modular structure of human brain networks during rest.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | Brain networks, fMRI, VAR models |
Subjects: | Q Science > QH Natural history |
Divisions: | Biosciences and Medical Engineering |
ID Code: | 73097 |
Deposited By: | Muhammad Atiff Mahussain |
Deposited On: | 27 Nov 2017 02:00 |
Last Modified: | 27 Nov 2017 02:00 |
Repository Staff Only: item control page