Aliman, Mohamad Nizam and Abas, Khairul Hamimah and Najib, Muhammad Sharfi and Ab. Aziz, Nor Azlina and Mohamad, Mohd. Saberi and Ibrahim, Zuwairie (2016) Gravitational search algorithm: R is better than R2? ARPN Journal of Engineering and Applied Sciences, 11 (7). pp. 4904-4910. ISSN 1819-6608
|
PDF
1MB |
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....
Abstract
ravitational Search Algorithm (GSA) is a metaheuristic population-based optimization algorithm inspired by the Newtonian law of gravity and law of motion. Ever since it was introduced in 2009, GSA has been employed to solve various optimization problems. Despite its superior performance, GSA has a fundamental problem. It has been revealed that the force calculation in GSA is not genuinely based on the Newtonian law of gravity. Based on the Newtonian law of gravity, force between two masses in the universe is inversely proportional to the square of the distance between them. However, in the original GSA, R is used instead of R2. In this paper, the performance of GSA is re-evaluated considering the square of the distance between masses, R2. The CEC2014 benchmark functions for real-parameter single objective optimization problems are employed in the evaluation. An important finding is that by considering the square of the distance between masses, R2, significant improvement over the original GSA is observed provided a large gravitational constant should be used at the beginning of the optimization process. © 2006-2016 Asian Research Publishing Network (ARPN).
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Gravitational search algorithm |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering |
Divisions: | Electrical Engineering |
ID Code: | 72686 |
Deposited By: | Siti Nor Hashidah Zakaria |
Deposited On: | 27 Nov 2017 02:00 |
Last Modified: | 27 Nov 2017 02:00 |
Repository Staff Only: item control page