Gobithasan, R. and Rofizah, R. and Jamaludin, Rofizah (2005) Straight Line And Circular Arc Methods For Developing G 1 And G 2 Involute Curves. Jurnal Teknologi C, 43 (C). pp. 55-66. ISSN 0127-9696
|
PDF
546kB |
Official URL: http://www.jurnalteknologi.utm.my/index.php/jurnal...
Abstract
Parametric polynomial curves such as Bezier, Ball, B-splines, Non-uniform B-splines (NURBS) are used for free form curve design. In this paper, we classify these curves as conventional curves. The flexibility of these curves deems suitable for use in the interactive design of curves. On the contrary, these curves cannot be used for highways, railways and robot trajectory designs as the signed curvature of these curves are difficult to control. As a result, the designer has to integrate a time consuming fair process. There are unconventional curves with easy control of the curvature namely, Euler and equiangular spirals. Unfortunately, the formulation of these spirals involves Fresnal integral and exponential functions respectively, which results in extra overhead and implementation. This paper introduces two type of curves which are generated from an evolute-involute process. The first type of involute curve(s) is generated using straight line(s) as the evolute(s) and named IFSL. The second type of involute curve(s) is generated based on circular arc(s) and a straight line and named IFCA.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Computer Aided Geometric Design (CAGD), involute curves, geometric continuity of degree 1 (G 1) and 2 (G 2), circular arcs, spirals |
Subjects: | Q Science > Q Science (General) |
ID Code: | 1401 |
Deposited By: | Mohd. Nazir Md. Basri |
Deposited On: | 05 Mar 2007 03:32 |
Last Modified: | 01 Nov 2017 04:17 |
Repository Staff Only: item control page