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STRAIGHT LINE AND CIRCULAR ARC METHODS FOR
DEVELOPING G1 AND G2 INVOLUTE CURVES

R. GOBITHASAN1, R. ROFIZAH2 & M. A. JAMALUDIN3

Abstract. Parametric polynomial curves such as Bezier, Ball, B-splines, Non-uniform B-splines
(NURBS) are used for free form curve design. In this paper, we classify these curves as conventional
curves. The flexibility of these curves deems suitable for use in the interactive design of curves. On
the contrary, these curves cannot be used for highways, railways and robot trajectory designs as the
signed curvature of these curves are difficult to control. As a result, the designer has to integrate a
time consuming fair process. There are unconventional curves with easy control of the curvature
namely, Euler and equiangular spirals. Unfortunately, the formulation of these spirals involves
Fresnal integral and exponential functions respectively, which results in extra overhead and
implementation. This paper introduces two type of curves which are generated from an evolute-
involute process. The first type of involute curve(s) is generated using straight line(s) as the evolute(s)
and named IFSL. The second type of involute curve(s) is generated based on circular arc(s) and a
straight line and named IFCA.

Keywords: Computer Aided Geometric Design (CAGD), involute curves, geometric continuity
of degree 1 (G1) and 2 (G2), circular arcs, spirals

Abstrak. Lengkung polinomial berparameter seperti Bezier, Ball, splin-B dan Splin-B tak seragam
digunakan dalam mereka bentuk lengkung bebas. Dalam kajian ini, kami telah mengkategori
lengkung di atas sebagai lengkung konvensional. Fleksibiliti lengkung-lengkung tersebut
membolehkannya diguna dalam mereka bentuk lengkung secara interaktif. Namun demikian,
lengkung konvensional ini tidak boleh diguna untuk mereka bentuk lebuh raya, landasan keretapi
dan trajektori robot kerana kelengkungan bertanda bagi lengkung-lengkung tersebut sukar dikawal.
Oleh yang demikian, pereka bentuk harus menerapkan proses saksama yang memakan masa.
Terdapat juga lengkung tak konvensional yang mudah dikawal dari segi kelengkungan, misalnya
lingkaran Euler dan sama sudut equiangular. Walau bagaimanapun, mereka bentuk lengkung tak
konvensional melibatkan kamiran Fresnal dan fungsi eksponen masing-masingnya yang
mengakibatkan overhed dan implementasi. Kajian ini memperkenalkan dua jenis lengkung yang
dijana melalui proses evolut-involut. Lengkung involut jenis pertama dijana menggunakan garis
lurus selaku evolut dan dinamakan IFSL. Lengkung involut jenis kedua dijana berdasarkan segmen
bulatan dan garis lurus, dan dinamakan IFCA.

Kata kunci: Reka Bentuk Geometri Dibantu Komputer (RGBK), lengkung involut, keselanjaran
geometri berdarjah 1 (G1) dan 2 (G2), segmen bulatan, lingkaran
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1.0 INTRODUCTION

The curvature is used as a measure of curve fairness for technical design specifically
for aesthetic design, such as car bodies. A curve is said to be fair if it has relatively
few curvature monotonous segments [1]. Fair curves are not just important for
Computer Aided Design (CAD) and Computer Aided Geometric Design (CAGD)
applications, but they play essential roles in highways and robot trajectory designs as
well. Inspection of curvature has been used as a passive shape interrogation tool in
the field of aesthetic design.

A significant disadvantage of using the conventional curves (Bezier, Ball, B-splines
and non-uniform B-splines) is that their curvature is a complicated function of its
parameter. Hence, it is not easy to use them in the design of curvature controlled
curves. In general, a spiral is said to be a plane curve traced by a point which winds
about a fixed pole from which it continually recedes [2]. In CAGD, a spiral is a
curve with monotone curvature of constant sign [3]. Two types of spirals which have
been widely used in curve design are Euler and equiangular spirals.

The Euler spiral (also called Cornu’s spiral or clothoid) was first studied by Euler
in 1781 in connection with an investigation of an elastic spring [4]. The Euler spiral
has been used for highways and railways route design [5]. This is because the curvature
for clothoid is linearly related to its arc length. The standard clothoid [6] with scaling
factor S is:
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where scaled versions of Fresnal integrals C(θ ) and S(θ ) are:
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The equiangular spiral (also called logarithmic spiral) was first discovered by
Descartes, followed by its properties of self reproduction by Bernoulli [4]. The radius
of curvature of logarithmic spiral is proportional to its arc length. Thus, the task of
constructing a smooth planar spline curve with the given end curvature is
straightforward using a logarithmic spiral. A logarithmic spiral L(θ ) in plane [7] can
be defined by:
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where e is the exponential function, r is the distance from the origin, θ is the angle
from the x-axis and, a and b are arbitrary constants.
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Both Euler and equiangular spirals have their own drawbacks, for instance, clothoid
involves integration which is numerically expensive (Simpson rule is widely used for
numerical integration). Logarithmic spirals involve exponential, sine and cosine
functions and it cannot be represented by a Bezier curve of finite degrees [7]. Thus,
researchers look into methods of approximating the spirals by conventional curves
[7-9]. A notable research on developing spirals by using cubic Bezier can be seen in
[10, 11].

2.0 PROBLEM STATEMENT

The idea of evolutes originated from Huygens [4] in 1673, in conjunction with his
studies on light. However, it is said that the concept had existed around 200 BC
where it first appeared in the fifth book of Apollonius’s conic sections [4]. Conversely,
the idea of involute of a circle was discussed and utilized by Huygens [4] in 1693 in
connection with his study of clocks without pendulums for service on ships of the
sea. Nowadays, involutes of circle are being used in the design of gear teeth [2].

Involutes can be drawn easily by mechanical means: if a string is attached to a
point on a curve, lying along the tangent to the curve at that point and is ‘wrapped
up’ on to the curve, the locus of any point of the string is an involute of the given
curve [12]. The original curve is called an evolute. A curve can have any number of
involutes, thus a curve is an evolute of each of its involutes and an involute of its
evolute. The normal to a curve is tangent to its evolute and the tangent to a curve is
normal to its involutes. The evolute of a curve is also the envelope of the normal to
the curve [13].

The involute of a convex curve in the plane is a spiral in the plane, e.g., the
involute of a circle is a spiral (also called anti-clothoid) and the involute of an
equiangular spiral is another equiangular spiral.

The idea of using evolute-involute process for curve design was first introduced
by Kuroda and Mukai [14] whereby circular arcs have been used as the evolutes to
develop G2 involute curves. Recently, Goodman et al. [15] have proposed the
generation of an involute spiral that matches G2 Hermite data by means of a
polynomial and a rational Pythagorean hodograph as the evolutes.

In this paper, we propose a different method to design G1 arc splines by using
straight lines as the evolutes. The resultant arc splines are named as Involutes from
straight lines (IFSL). The design of G2 spirals using circular arcs and a straight line as
the evolutes is elaborated in Section 5. The resultant spirals are named as Involutes
from Circular Arcs (IFCA). The proposed spiral has sufficient degree of freedom
which makes it suitable for free form curve design.
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3.0 A SEGMENT OF IFCA

Let a straight line defined from E0(a0, b0) to E1(a1, b1) be the evolute. For simplicity,
let E0 = (0, R0), where R0 is the distance from the origin. The length of the stated line
is denoted by L0 and the angle formed between the y-axis and the evolute line by θ0.
By using a trigonometric function, one may produce an involute segment, IFSL0,
denoted by A(θ0) in the form of a parametric equation with θ0 as the parameter. The
end points are denoted as I0(x0, y0) = (0, 0) and I1(x1, y1) = E1. Notationwise:

( ) [ ] ( ) ( )0 0 0 0 1 1 1 1 1 10E a ,b ,R , E a ,b I x , y ,= = (4)

( ) [ ] ( ) ( )0 0 0 1 1 1 0 0 0 0 00 0 sin 1 cos 0 2I x , y , , I x , y R ,R ,θ θ θ π= = − ≤ ≤   (5)

( ) ( )0 0 0 0 0 0sin 1 cos 0A R ,R ,θ θ θ θ θ= − ≤ ≤  
(6)

From (6), one may generate an involute which is in the form of a circular arc with
radius R0 = L0. Figure 1 shows an example of generating a IFSL segment with R0 =
5 and θ0 = π/3. One may choose a desired θ0 to design a convex IFSL0 curve, for
instance, if θ0 = 2π, the resulting IFSL0 curve is a circle.

Figure 1 A segment of IFSL
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4.0 A GENERAL ALGORITHM TO DEVELOP IFSL SPLINE

To generate IFSLi spline with (n + 1) number of segments where i = 0, …, n, and 0 ≤
θi ≤ 2π, we need to calculate the evolutes of a straight line. For now, consider
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i
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= ∑  (see Remark 1). The interpolating point of the evolutes can be defined

recursively as:

( )1 1 1
0 0

sin cos
n n

i i i i i i i i i
i i

E a ,b a L ,b L ,θ θ+ + +
= =

     
= + −            

∑ ∑ (7)

Next, the end points of involutes are determined by letting Ri+1 = Ri – Li as:
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Finally, for i = 1, …, n, IFSLi spline is defined as:
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The signed curvature of IFSLi spline, κ(θ ) is calculated as:
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where the symbol × represents the two-dimensional cross product .The norm or

length of ( )'
iA θ  is denoted as ( )'

iA θ . Equation (10) proofs that IFSL spline consists

of circular arcs (the curvature of a circular arc is constant).
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and En+1 ≠ In+1. As a result, it is advisable to fix 0
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= ∑  for free form curve

design in accordance with the evolute-involute process.
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We developed a package using MATLAB®7.0 to design IFSL spline interactively.
By default, θi is set to be 10 degree and Li is set with a uniform length: Li = R0/n+1.
Figure 2 illustrates four examples of developing IFSL spline with 20 segments when
R0 = 30.

 Figure 2(a) shows an example of IFSL spline generated using default values θi of
and Li. Each IFSL segment is G1, it shares the same interpolating point and tangent
vectors at the joint. Figure 2(b) (and Figure 2(c)) shows the resulting IFSL spline

(d)

(a) (b)

(c)

Figure 2 IFCA spline consists of circular arcs
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when  0
0

n

i
i

R L
=

> ∑ (and 0
0
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< ∑ ). Figure 2(d) shows an example of curve design

using θ3 = π/2.
 As a result, the designer may implement the proposed algorithm to design a

family of convex splines by varying the values of θi and Li, where 0 ≤ θi ≤ 2π and

0
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i

R L .
=

= ∑

5.0 A SEGMENT OF IFCA

In this section, the construction of a IFCA spiral segment (denoted as B(θ ) in
parametric form) is shown. Figure 3 illustrates a IFCA0 spiral.

Figure 3 IFCA0 spiral segment

Let a circular arc be defined from E0(a0, b0) to E1(a1, b1) and a straight line from
E1(a1, b1) to E2(a2, b2) be the evolute, where E0 = (0, R0). The length of the evolute
line is denoted as L0, the length of the circular arc segment is denoted as S0 and the
angle of the segment is denoted as θ0. The properties of IFSL0 spiral segment are
defined as:

( ) [ ] ( ) ( )0 0 0 0 0 0 0 1 00E a ,b ,R , C p ,q R ,R ,= = (11)

( ) [ ]1 1 1 0 0 0 0 0 0cos sinE a ,b p p ,q p ,θ θ= − − (12)
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( ) [ ]1 1 1 1 0 0 1 0 0sin cosI x , y a L ,b L ,θ θ= + − (13)

where L0 = R0 – S0, S0 = R1θ0 and 0 ≤ θ0 ≤ 2π. Hence, IFSL0 is defined as:

( ) ( ) ( ) ( ) ( )0 0 1 0 1 0 1 0 1 0cos sin sin cosB p R R R , q R R R ,θ θ θ θ θ θ θ= − + − − − −  
(14)

where 0 ≤ θ ≤ θ0. Figure 3 shows an example of IFCA0 spiral segment generated
with R0 = 18, R1 = 9 and θ0 = π/3.

The signed curvature of IFSL0 spiral segment is calculated as:

( )0
0 1

1
R R

κ φ
φ

=
− ⋅

(15)

where 0 ≤ φ ≤ θ0.

6.0 A GENERAL ALGORITHM TO GENERATE SPIRAL
SEGMENTS

This section elaborates the algorithm to generate IFSLi spline with (n+1) segments

where i = 1, …, n, and 0 ≤ θi ≤ 2π. A necessary condition is 0
0

n

i n
i

R S L
=

 
= + 

 
∑ ,

where  Si = Ri+1θi and Li = Li–1 – Si. The centre point of the circular arc is are
calculated as:

( ) ( ) ( )
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i i i i i i i i i i i
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where Ri denotes the radius of circular arc (evolute). The interpolating point of the
evolutes is calculated as:

( )1 1 1 1
0 0

cos sin
n n

i i i i i i i i i
i i

E a ,b p R ,q R ,θ θ+ + + +
= =

    
= − −    

     
∑ ∑ (17)

The interpolating point of the IFSLi spiral segment is calculated as:

( )1 1 1 1 1
0 0

cos sin
n n

i i i i i i i i i
i i

I x , y a L ,b L ,θ θ+ + + + +
= =

    
= + −    

     
∑ ∑ (18)

Finally, the general equation for IFSLi spline is:
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( ) ( ) ( )
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where 
1

0 0

n n

i i
i i

θ θ θ
−

= =
≤ ≤∑ ∑  and 0 iφ θ≤ ≤ .

Upon algebraic simplification, the parametric equation of κ(θ), can be written in
a simple form, where 0 iφ θ≤ ≤ :

( )
1 1

1
i

i iL R
κ φ

φ− +
=

− ⋅
(20)

Figure 4 illustrates an example of  IFCA spline generated with 5 IFCA spiral
segments with:

{θ0, θ1, θ2, θ3, θ4} = {π/6,π/5,π/5,π/4,π/3},  {R1, R2, R3, R4, R5} = {8, 13, 5, 8, 17}

and R0 = 60. The curvature plot (κ(θ ) against parameter θi) illustrated in Figure 5
indicates that IFCA segments consist of spirals with monotonic increase of positive
signed curvature. To note, IFCA spiral segments are joined with GC2 as these pieces
share signed curvature values at Ii+1. The designer may fix the end curvatures by

defining ( )0
0

1
0

R
κ =  and ( )

1 1

1
n

n n

,
L R

κ φ
φ− +

=
− ⋅

 where 0 n .φ θ≤ ≤

Figure 4 Five segments of IFSL spirals joined with G2
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7.0 CONCLUSION

 A general algorithm to develop G1 IFSL and G2 IFCA has been shown in this
paper. The IFSL and IFCA splines consist of circular arcs and spirals respectively.
These curves can be used for free form curve design, e.g., railways and highways
design and robot trajectories where the signed curvature of proposed curves can be
controlled to a certain extent. Future work would include identifying the necessary
and sufficient conditions that can be matched for a given G2 Hermite data.
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