Abdullah, Redzuan and Easterling, W. Samuel (2009) New evaluation and modeling procedure for horizontal shear bond in composite slabs. Journal of Constructional Steel Research, 65 (4). pp. 891-899.
|
PDF
3MB |
Official URL: http://dx.doi.org/10.1016/j.jcsr.2008.10.009
Abstract
A new method for modeling the horizontal shear bond in steel deck-concrete composite slabs is proposed. The method considers the slab slenderness as the strength parameter that affects the accuracy of horizontal shear bond modeling. A calculation procedure called the Force Equilibrium method is developed to generate shear bond stress versus end slips relationship (shear bond property) from bending tests. An interpolation procedure is also presented to estimate the shear bond property curves for slabs of varying slenderness using two sets of bending test data. The shear bond property curves are applied to connector elements of finite element models to model the horizontal shear bond behavior in composite slabs. The results of this study show that the shear bond of composite slabs under bending varies with the slenderness parameter, and hence influences the slab strength and behavior, as well as affecting the accuracy of the finite element analyses. The finite element analyses conducted on slabs with different slenderness utilizing a single shear bond property, which are not varied according to the slenderness parameter, may lead to either safe or unsafe results, depending on the geometry of the slabs.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | composite slabs, horizontal shear bond, elemental tests, finite element analysis |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
Divisions: | Civil Engineering |
ID Code: | 9693 |
Deposited By: | Zalinda Shuratman |
Deposited On: | 28 Feb 2010 11:04 |
Last Modified: | 14 Sep 2017 07:22 |
Repository Staff Only: item control page