Universiti Teknologi Malaysia Institutional Repository

A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion

Abdi, A. and Hasan, S. and Shamsuddin, S. M. and Idris, N. and Piran, J. (2021) A hybrid deep learning architecture for opinion-oriented multi-document summarization based on multi-feature fusion. Knowledge-Based Systems, 213 . ISSN 0950-7051

[img]
Preview
PDF
2MB

Official URL: http://dx.doi.org/10.1016/j.knosys.2020.106658

Abstract

Opinion summarization is a process to produce concise summaries from a large number of opinionated texts. In this paper, we present a novel deep-learning-based method for the generic opinion-oriented extractive summarization of multi-documents (also known as RDLS). The method comprises sentiment analysis embedding space (SAS), text summarization embedding spaces (TSS) and opinion summarizer module (OSM). SAS employs recurrent neural network (RNN) which is composed by long short-term memory (LSTM) to take advantage of sequential processing and overcome several flaws in traditional methods, where order and information about a word have vanished. Furthermore, it uses sentiment knowledge, sentiment shifter rules and multiple strategies to overcome the existing drawbacks. TSS exploits multiple sources of statistical and linguistic knowledge features to augment word-level embedding and extract a proper set of sentences from multiple documents. TSS also uses the Restricted Boltzmann Machine algorithm to enhance and optimize those features and improve resultant accuracy without losing any important information. OSM consists of two phases: sentence classification and sentence selection which work together to produce a useful summary. Experiment results show that RDLS outperforms other existing methods. Moreover, the ensemble of statistical and linguistic knowledge, sentiment knowledge, sentiment shifter rules and word-embedding model allows RLDS to achieve significant accuracy.

Item Type:Article
Uncontrolled Keywords:deep learning, linguistic knowledge, opinion summarization
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computing
ID Code:95605
Deposited By: Narimah Nawil
Deposited On:31 May 2022 13:04
Last Modified:31 May 2022 13:04

Repository Staff Only: item control page