Universiti Teknologi Malaysia Institutional Repository

Prediction of meteorological drought by using hybrid support vector regression optimized with hho versus pso algorithms

Malik, Anurag and Tikhamarine, Yazid and Sammen, Saad Shauket and Abba, Sani Isah and Shahid, Shamsuddin (2021) Prediction of meteorological drought by using hybrid support vector regression optimized with hho versus pso algorithms. Environmental Science and Pollution Research, 28 (29). pp. 39139-39158. ISSN 0944-1344

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s11356-021-13445-0

Abstract

Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535–0.965, MAE = 0.363–0.622, NSE = 0.558–0.860, COC = 0.760–0.930, and WI = 0.862–0.959) outperformed the SVR-PSO model (RMSE = 0.546–0.967, MAE = 0.372–0.625, NSE = 0.556–0.855, COC = 0.758–0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.

Item Type:Article
Uncontrolled Keywords:Harris Hawks optimization, PACF, particle swarm optimization, uttarakhand
Subjects:T Technology > TA Engineering (General). Civil engineering (General)
Divisions:Civil Engineering
ID Code:94087
Deposited By: Yanti Mohd Shah
Deposited On:28 Feb 2022 13:31
Last Modified:28 Feb 2022 13:31

Repository Staff Only: item control page