Universiti Teknologi Malaysia Institutional Repository

Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery

Agi, A. and Junin, R. and Jaafar, M. Z. and Mohsin, R. and Arsad, A. (2020) Synthesis and application of rice husk silica nanoparticles for chemical enhanced oil recovery. Journal of Materials Research and Technology, 9 (6). pp. 13054-13066. ISSN 2238-7854

[img]
Preview
PDF
2MB

Official URL: http://www.dx.doi.org/10.1016/j.jmrt.2020.08.112

Abstract

Silica (SiO2) nanoparticles were synthesized from rice husk (RH) via wet milling method and evaluated for enhanced oil recovery (EOR) applications. Physical properties of RH-SiO2 nanoparticles (RH-SNP) with its size distribution were explored through field emission scanning electron microscopy (FESEM) and dynamic light scattering (DLS). Stability, functional groups and purity of RH-SNP were determined by zeta potential, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD), respectively. Effect of RH-SNP on the precipitation and thermal degradation of oilfield polyacrylamide (HPAM) was studied using Brookfield RST rheometer. Interfacial tension (IFT) properties of RH-SiO2 polymeric nanofluid (RH-SPNF) at interface of oil and water (O/W) were investigated using Easy-Dyne KRUSS tensiometer. Subsequently, oil displacement efficiency of RH-SPNF was determined and compared with oilfield HPAM at reservoir conditions using Fars EOR high-pressure high-temperature (HPHT) core flooding equipment. The wet milling method was effective in producing RH-SNP of size ranges 43.9-59.5 nm with a purity of 98% through the mechanism of nucleation, Brownian motion and coalescence. Rheological results show that RH-SNP inhibited the precipitation and thermal degradation of oilfield HPAM. IFT of RH-SPNF showed a monotonic tendency as temperature increased. HPAM and RH-SPNF flooding showed an incremental oil recovery of approximately 10% and 24%, respectively. Emulsion generated using RH-SPNF shows higher stability and resistance to coalescence. Finally, mobility ratio of water flooding approaches unity faster, compared to HPAM and RH-SPNF. Overall, the low energy utilization, use of low-cost and benign raw material make RH-SNP and the extraction method an appropriate substitute to commercially available SiO2 nanoparticles.

Item Type:Article
Uncontrolled Keywords:nanoparticles, polyacrylamide, interfacial tension
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:94015
Deposited By: Narimah Nawil
Deposited On:28 Feb 2022 13:16
Last Modified:28 Feb 2022 13:16

Repository Staff Only: item control page