Raja Kumaran, Shamini (2017) Business intelligence framework using ant colony optimization for feature selection in higher education institution. Masters thesis, Universiti Teknologi Malaysia, Faculty of Computing.
|
PDF
942kB |
Official URL: http://dms.library.utm.my:8080/vital/access/manage...
Abstract
Recently, business intelligence (BI) has become an important tool for effective decision-making. BI is a mathematical framework to gain information and knowledge through the process of extracting, transforming, managing, and analyzing data. The demand for accurate knowledge in higher education sector needs a correct technique to extract the exact information for decision-making. However, current BI frameworks and systems lack the ability to transform data into information, and these caused users not to able to fully utilize the BI outcome. This research developed a BI framework for the higher education that is able to explore, analyse and visualize the relevant data into information for use by the top management. This framework identifies the best set of attributes and evaluates the performance of the model with the help of 27 input features. In this case study, the framework used Ant Colony Optimization (ACO) technique mainly to identify the best set of attributes, and the performance was validated using Support Vector Machine (SVM). The framework consists of four layers which are data source, data integration, analytic, and access. Each layer contributes to decision making in terms of processing data, selection of significant features and data visualization. In this study, 46,658 input data were processed for identification of Graduate on Time (GOT) decision in the context of higher education referred as Masters and Doctor of Philosophy (PhD) postgraduates who completed their study within a specified period. The performance evaluation of the data achieved accuracies of 86.44% for PhD and 96.2% for Master’s. Based on the findings, the results showed that the BI dashboard as an output from the framework is capable of providing a good decision-making tool for education management.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | Thesis (Sarjana Falsafah) - Universiti Teknologi Malaysia, 2017; Supervisors : PM.. Dr. Mohd. Shahizan Othman, Dr. Lizawati Mi Yusuf |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Computing |
ID Code: | 86987 |
Deposited By: | Fazli Masari |
Deposited On: | 31 Oct 2020 12:16 |
Last Modified: | 31 Oct 2020 12:16 |
Repository Staff Only: item control page