Irfan Bahiuddin, Irfan Bahiuddin and Mazlan, Saiful Amri and Fitrian Imaduddin, Fitrian Imaduddin and Shapiai, Mohd. Ibrahim and Ubaidillah, Ubaidillah and Dhani Avianto Sugeng, Dhani Avianto Sugeng (2024) Review of modeling schemes and machine learning algorithms for fluid rheological behavior analysis. Journal of the Mechanical Behavior of Materials, 33 (1). pp. 1-21. ISSN 2191-0243
PDF
555kB |
Official URL: http://dx.doi.org/10.1515/jmbm-2022-0309
Abstract
Machine learning's prowess in extracting insights from data has significantly advanced fluid rheological behavior prediction. This machine-learning-based approach, adaptable and precise, is effective when the strategy is appropriately selected. However, a comprehensive review of machine learning applications for predicting fluid rheology across various fields is rare. This article aims to identify and overview effective machine learning strategies for analyzing and predicting fluid rheology. Covering flow curve identification, yield stress characterization, and viscosity prediction, it compares machine learning techniques in these areas. The study finds common objectives across fluid models: flow curve correlation, rheological behavior dependency on variables, soft sensor applications, and spatial-temporal analysis. It is noted that models for one type can often adapt to similar behaviors in other fluids, especially in the first two categories. Simpler algorithms, such as feedforward neural networks and support vector regression, are usually sufficient for cases with narrow range variability and small datasets. Advanced methods, like hybrid approaches combining metaheuristic optimization with machine learning, are suitable for complex scenarios with multiple variables and large datasets. The article also proposes a reproducibility checklist, ensuring consistent research outcomes. This review serves as a guide for future exploration in machine learning for fluid rheology prediction.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | machine learning, rheology, viscosity |
Subjects: | T Technology > TJ Mechanical engineering and machinery |
Divisions: | Malaysia-Japan International Institute of Technology |
ID Code: | 108955 |
Deposited By: | Yanti Mohd Shah |
Deposited On: | 16 Dec 2024 00:46 |
Last Modified: | 16 Dec 2024 00:46 |
Repository Staff Only: item control page