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Abstract: Machine learning’s prowess in extracting insights
from data has significantly advanced fluid rheological beha-
vior prediction. This machine-learning-based approach,
adaptable and precise, is effective when the strategy is
appropriately selected. However, a comprehensive review
of machine learning applications for predicting fluid
rheology across various fields is rare. This article aims to
identify and overview effective machine learning strategies
for analyzing and predicting fluid rheology. Covering flow
curve identification, yield stress characterization, and visc-
osity prediction, it compares machine learning techniques
in these areas. The study finds common objectives across
fluid models: flow curve correlation, rheological behavior
dependency on variables, soft sensor applications, and spa-
tial–temporal analysis. It is noted that models for one type

can often adapt to similar behaviors in other fluids, espe-
cially in the first two categories. Simpler algorithms, such as
feedforward neural networks and support vector regression,
are usually sufficient for cases with narrow range variability
and small datasets. Advancedmethods, like hybrid approaches
combining metaheuristic optimization with machine learning,
are suitable for complex scenarios with multiple variables and
large datasets. The article also proposes a reproducibility
checklist, ensuring consistent research outcomes. This review
serves as a guide for future exploration in machine learning
for fluid rheology prediction.
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Abbreviation

AI artificial intelligence
ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural networks
BP backpropagation
ELM extreme learning machine
FFNN feedforward neural network
GA genetic algorithm
GC group contribution
GMDH group method of data handling
LM Levenberg–Marquardt
MLP multilayer perceptron
MSE mean squared error
PNN polynomial neural network
PSO particle swarm optimization
RBFNN radial basis function neural network
SVR support vector regression

Symbol

τ shear stress
τyield yield stress
η viscosity/apparent viscosity
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η
plastic

plastic viscosity
γ̇ shear rate
k consistency index
np power law exponent
kT thermal conductivity
P pressure
T temperature
ρ density
wfluid weight percentage

1 Introduction

Investigating the rheological parameters of fluids can be
challenging, especially when considering their dependence
on specific variables. Understanding these rheological para-
meters is critical for a wide range of real-world applications,
as fluid behavior significantly impacts various industries. For
example, the viscosity and rheological properties of drilling
fluids are critical for efficient drilling operations. Failure to
predict these parameters accurately can lead to costly drilling
problems, including wellbore instability and equipment
damage [1]. Industries that use polymers rely on accurate
rheological data for extrusion, molding, and forming pro-
cesses. Inadequate predictions can result in defects, waste,
and production delays [2]. The rheological properties of con-
crete and cement mixtures influence their workability and
curing behavior. Poor predictions can result in construction
defects and reduced durability of structures [3]. In addition,
fluid rheology is crucial in the design and performance of
smart materials, including shape memory alloys and respon-
sive fluids, as it ensures the desired response to external sti-
muli. Accurate control of rheological parameters is essential
for these materials to function as intended and meet the spe-
cific requirements of various applications [4].

The nonlinear behavior of materials, such as shear
thickening or thinning [5,6], can be influenced by various
factors. The factor can be the fabrication techniques and
compositions [7]. Furthermore, external stimuli such as
magnetic fields and temperature can also affect the mate-
rials [8,9]. Due to the effort to understand and predict these
complex behaviors, various classical models have been
developed to characterize fluid behavior. Among them,
the power law and Bingham plastic models are well-known
for describing the behavior of non-Newtonian fluids [10,11].
Both models are utilized to predict viscosity and shear
stress as a function of shear rate. Meanwhile, several
extended models have also been formulated to accommo-
date the effects of other variables, such as temperature
[12,13] and magnetic fields [9,14]. It is important to note

that conventional models often have limited applicability
or a restricted range of independent variables [15,16]. With
the advance of computational technology and data avail-
ability in various databases, machine learning approaches
have become more popular to overcome the limitations of
conventional models for predicting rheological parameters.

Machine learning models, including artificial neural
networks (ANN), are applied to predict the rheological
properties of fluids. For example, the methods can be
used in pattern prediction of viscosity [17] and yield stress
[9,14] as a function of various variables. The models have
been proven to provide a reliable prediction for rheolo-
gical parameters, especially viscosity [15] and shear stress
[18,19], as a function of composition structures, particle
concentrations, and operating variables. The models are
generated using universal methods for learning the experi-
mental dataset using a set of equations and algorithms.
Several other machine learning techniques can also be
applied, such as extreme learning machine (ELM), group
method of data handling (GMDH), polynomial neural net-
works (PNNs), support vector regression (SVR), adaptive
neuro-fuzzy inference system (ANFIS), and radial basis func-
tion neural networks (RBFNN). The high number of previous
works opens the possibility of selecting and employing the
most effective artificial intelligence (AI) technique in a spe-
cific field of rheology [15].

Investigating, mapping, and discussing the current
works are essential for considering the appropriate appli-
cation or development of the machine learning model in a
particular rheological behavior modeling case. A review
article has discussed viscosity prediction using traditional
empirical and machine learning models in automotive radia-
tors [20]. However, the discussion is limited to nanofluids and
covers only articles published up to 2016. In fact, after 2016,
numerous articles have contributed to the more advanced
application of various machine learning methods, such as
in [21,22]. Although Hemmati-Sarapardeh et al. [15] have
attempted to summarize the existing techniques up to 2018
while proposing a committee machine intelligence system,
the discussion is not comprehensive enough and only limited
to the nanofluids application. In oil and gas, a review article
about the machine learning application for drilling fluid has
shown the method’s potential for tackling the computation-
ally expensive nature of the traditional methods [23]. In food,
the early review of the machine learning application is only
limited to the methods of ANFIS and ANN [24]. Nnyigide and
Hyun [25] also discussed the potential of themachine learning
application for food rheology while highlighting that the
method is still relatively new and needs more exploration.

Table 1 shows several existing literature reviews related
to rheological parameter predictions and machine learning-

2  Irfan Bahiuddin et al.



Ta
bl
e
1:

Li
te
ra
tu
re

re
vi
ew

of
m
ac
hi
ne

le
ar
ni
ng

an
d
rh
eo

lo
gi
ca
lp

ro
pe

rt
ie
s

Re
f

M
od

el
in
g
ob

je
ct
s

Re
vi
ew

ed
m
ac
hi
ne

le
ar
ni
ng

Pr
ed

ic
te
d
rh
eo

lo
gy

pa
ra
m
et
er
s

Fo
cu

s
on

m
ac
hi
ne

le
ar
ni
ng

Fo
cu

s
on

rh
eo

lo
gi
ca
l

pr
op

er
ti
es

Re
m
ar
ks

[2
6]

Bi
od

ie
se
lp

ro
du

ct
io
n

st
ud

ie
s

AN
N

Vi
sc
os
ity
,k
in
em

at
ic
vi
sc
os
ity

Ye
s

N
o

[2
7 ]

Bi
of
ue

l’s
lif
e
cy
cl
e

AN
N

Ap
pa

re
nt

vi
sc
os
ity
,k
in
em

at
ic

vi
sc
os
ity
,a

nd
pl
as
tic

vi
sc
os
ity

Ye
s

N
o

[2
8 ]

Fo
od

pr
oc
es
s
m
od

el
in
g

RN
N
s,
de

ep
ne

ur
al

ne
tw
or
ks

w
ith

re
st
ric
te
d

Bo
ltz
m
an

n
m
ac
hi
ne

al
go

rit
hm

,g
en

et
ic
al
go

rit
hm

-
AN

N
,a

nd
AN

FI
S

Vi
sc
os
ity
,l
os
s
m
od

ul
us
,s
to
ra
ge

m
od

ul
us
,a

nd
st
re
ss

re
la
xa
tio

n
Ye
s

N
o

O
nl
y
fo
cu
s
on

ne
ur
al

ne
tw
or
ks

[2
5 ]

Fo
od

rh
eo

lo
gy

AN
FI
S
an

d
AN

N
Ap

pa
re
nt

vi
sc
os
ity

Ye
s

Ye
s

Co
ve
re
d
on

ly
AN

FI
S

an
d
AN

N
[2
4 ]

H
on

ey
Rh

eo
lo
gy

AN
FI
S
an

d
AN

N
Ap

pa
re
nt

vi
sc
os
ity

an
d
co
m
pl
ex

vi
sc
os
ity

N
o

Ye
s

[2
9 ]

Io
ni
c
Li
qu

id
s

Le
as
t
sq
ua

re
SV
M
,E

LM
,a

nd
M
LP

Vi
sc
os
ity

Ye
s

N
o

[3
0 ]

M
ag

ne
to
rh
eo

lo
gi
ca
l(
M
R)

fl
ui
ds

AN
N
EL
M

RB
F

Yi
el
d
st
re
ss

N
o

Ye
s

[3
1]

N
an

ofl
ui
d
m
od

el
in
g

us
in
g
AN

N
AN

N
D
yn
am

ic
vi
sc
os
ity

Ye
s

N
o

AN
N

[3
2 ]

N
an

ofl
ui
ds

us
in
g
m
ac
hi
ne

le
ar
ni
ng

AN
N

D
yn
am

ic
vi
sc
os
ity

Ye
s

N
o

Fo
cu
s
on

na
no

fl
ui
ds

[3
3 ]

N
an

ofl
ui
ds

in
ge

ne
ra
l

BP
-A
N
N
,G

M
D
H
,G

A
BP

-A
N
N
,a

nd
se
lf-

or
ga

ni
zi
ng

m
ap

s
D
yn
am

ic
vi
sc
os
ity

N
o

N
o

[3
4 ]

St
at
is
tic
s
of

th
e
AN

N
st
ud

y
fo
r
na

no
fl
ui
ds

BP
-A
N
N
,G

M
D
H
,G

A
BP

-A
N
N
,a

nd
se
lf-

or
ga

ni
zi
ng

m
ap

s
D
yn
am

ic
vi
sc
os
ity

Ye
s

N
o

[3
5]

M
ud

m
od

el
s

AN
N

Pl
as
tic

vi
sc
os
ity

N
o

Ye
s

Machine learning for fluid rheological behavior: A review  3



based models. It includes studies on biodiesel production,
biofuel’s life cycle, and food process modeling, predomi-
nantly using models like ANN, recurrent neural network
(RNN), and ANFIS. Most studies focus either on machine
learning or rheological properties, not both, leading to a
less detailed discussion. The exception is Nnyigide and
Hyun’s work [25], which covers both aspects but is limited
to food applications and specific models like ANFIS and
ANN. Overall, there appears to be a lack of in-depth reviews
on the application of ANN in fluid rheology, suggesting an
area ripe for further exploration and analysis.

Although there are numerous reviews of machine
learning applications on fluids, the existing reviews only
cover a specific field without summarizing the generaliza-
tion of the applicability of methods and reproducibility.
The summary and classification of the current methods
will be beneficial to the application of different machine
learning methods to various fields or open the integration
of the existing techniques with other methods in other
fields.

Therefore, this study aims to identify the most effective
machine learning algorithms for predicting fluid rheology
behaviors by discussing and mapping the input and out-
puts of various schemes in various fields. The comparisons
consider the existing applied machine learning model
methods for building a fluid rheological model. The content
of this article consists of five parts. First, the methodology
for conducting the literature review is discussed. The fol-
lowing parts are the fields applying machine learning, the
modeling purposes, the input and output schemes determi-
nation, data preparation and preprocessing, and several
issues related to the machine learning algorithm, including

the training methods and model topologies. The final part is
about the conclusion and the possible future research
directions.

2 Methodology

This section presents the methodology for surveying the
article and an overview of the historical development of
the research. The search was conducted using Scopus,
Google Scholar, and Web of Science. First, the Scopus
search is performed using a combination of words related
to machine learning methods in keywords, which are “neural
networks,” “machine learning,” “ANN,” “GMDH,” “artificial
intelligence,” “ANFIS,” “neuro-fuzzy,” “SVR,” “support vector,”
“multilayer perceptron,” “random forest,” and “ELM.” The
keywords involving rheological properties of fluids, which
are “viscosity,” “shear stress,” “rheology,” “rheological,” and
“Bingham,”were also used. Books and chapters are excluded.
The conference proceedings were selected only from peer-
reviewed articles. A search using Google Scholar and Web
of Science was also conducted using the same keywords to
capture works with reliable sources and a high number of
citations. The references and the cited articles in the selected
documents are carefully examined to check for potentially
missed articles.

The number of articles published up to 2024 is shown
in Figure 1. The figure is obtained from data based on
Scopus with the mentioned keywords and criteria, with
articles numbered 2,849 before further filtering. Based on
the figure, the application of machine learning methods

Figure 1: The published article related to machine learning methods, fluid viscosity, and fluid shear stress between 1993 and 2022.
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has gained attention in the last two decades, reaching up to
about 400 by 2023. The probable reason for the increasing
trend is the advances in computational tools and machine
learning methods. Those data are then filtered to fit the
scope of this study. The exclusion ensures that the review
process considers only studies with rheological parameters
or variables as the output. The content of the articles was
thoroughly inspected to ensure that the article satisfyingly
fulfills the criteria, which are machine learning applica-
tions in predicting fluid rheological behavior consisting
of viscosities, shear stress, and yield stress. After the article
is filtered, 113 main articles are selected, which become the
main foundation of the survey article. Material with a
semi-solid state is also included as long as it satisfies the
mentioned criteria. Based on a quick look at the published
articles, various applications of diverse machine learning
methods across multiple domains and the integration of
existing methodologies with approaches from different
fields are identified.

Figure 2 shows the general timeline of each major
field. The ANN application for predicting petroleum visc-
osity is the oldest, marked by the application of multilayer
perceptron (MLP) for several crude oil data [36], with the
latest being the application in drilling fluids by Davoodi
et al. [37]. The ANN application in food is the second oldest,
with sucrose modeling by Bouchard and Granjean [38],
followed by smart materials [39] and Mooney viscosity
[40] prediction. The applications in nanofluids [41] and
ionic liquids [42] can be considered the youngest in 2011.

Several other fields that have applied machine learning but
only have a few numbers are refrigerants, cement, asphalt,
and others.

Viscosity is the majority of predicted parameters, fol-
lowed by shear stress. Meanwhile, a yield stress variable
was first predicted in 2005 for the smart materials applied
in dampers [43]. The long history of machine learning
applications in various fluids is a baseline for future
advancement. For example, besides using ANN, SVR, and
RBFNN, a deep neural network is also applied to predicting
food rheological properties [44]. The well-known methods
in other fields have also been integrated with the existing
machine learning methods. An example is the ionic liquids
in chemistry for combining the group contribution (GC)
method with ANN [45].

3 Simulation schemes

Machine learning’s role in predicting rheological behavior
relies on setting clear goals for the models and choosing
the right input and output variables. Before selecting a
machine learning algorithm and configuring the model, it
is essential to decide the model’s purpose. Crucial to this
process is the selection of appropriate inputs and outputs,
as incorrect choices can lead to wrong correlations and
unnecessarily extended training times. Identifying the
usual modeling purpose can be obtained by reviewing

1993 1995 2000 2005 2010 2015 2020 2023

Oil (1993-2023)
1993: Multilayer perceptron is firstly employed to predict fluid viscosity

Food (1995-2023)
2017: Deep neural networks is applied in predicting the food viscosity

Smart Materials (2005-2023)
2005: Yield stress is predicted using machine learning
Mooney Viscosity Prediction (2005-2023)

Biofuel (2010-2023)

Nanofluids (2011-2023)

Ionic Liquids (2011-2023)

2017: Semisupervised Learning is firstly applied to predict 
material viscosity

2011: MLP application as a soft sensor in 
viscosity prediction

2017: Machine learning is applied to 
predict shear thickening phenomena

2014: combination of GC theory and ANN 
for predicting fluid viscosity

Figure 2: Timeline of the published articles for each field related to rheological properties prediction using machine learning methods.
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the input-output schemes of existing works and observing
their similarities and differences. Table 2 lists these vari-
ables and their predicted outcomes, supported by rele-
vant research. While all output variables are related to
rheology, the inputs vary and can include shear rate,
temperature, and composition, among others.

Several other works proposed alternatives by pro-
viding inverse models. The models treat the required rheo-
logical parameters as the inputs, with the composition as
the output. This kind of input–output scheme can be con-
sidered an inverse modeling scheme. Inverse modeling to
predict the material composition based on certain material
parameters is still rare, such as in magnetorheological
fluids [98], NiMnGa [99], and salts [100].

The usual simulation purposes, based on the observa-
tion of Table 2, can be classified into three groups. The first
group deals with the efforts to replicate the rheological
behavior through the flow curve trend. The shear stress
can be utilized to check whether the fluid is Newtonian by
plotting shear stress and viscosity η as a function of shear
rate. The second group involves the effects of changes in the
different operating conditions and compositions of the beha-
viors. The first and second groups can be considered similar
if the shear rate is included as an input. If the shear rate is
excluded, the model is classified in the second group. The
third group is the viscosity prediction in soft sensor plat-
forms. Meanwhile, the last group is about the rheological
parameter distribution prediction as a function of geome-
trical features.

3.1 Predicting the flow curve correlation
with various variables

Predicting the flow curve of a material can be beneficial in
identifying the fluid’s behavior over a specific shear rate
range. Flow curves need at least one shear rate variable as
input. The apparent viscosity vs shear rate correlation is
often used to check whether the fluids have a shear thinning
or thickening pattern. Shear thinning shows decreasing visc-
osity with the increase in shear rate. On the other hand,
shear thickening shows an increasing trend, although it
will usually reach a peak and then decrease after reaching
a specific shear rate value. Most models of non-Newtonian
fluids show shear-thinning trends, such as cement slurries
[80,81], foods [54], drilling fluids [93], and magnetorheolo-
gical fluids [18,82]. The work of the ANN application for
predicting shear thickening can only be found in the works
of Arora et al. [86].

Further study about the machine learning application
for predicting shear thickening behavior should be explored
rather than using phenomenological models [101]. In terms
of predicted variables, it is not recommended to predict both
shear stress and apparent viscosity using a single model like
the study conducted by Dumitriu et al. [55] because the pre-
dictions would be redundant if the shear rate is involved.
The shear stress can be calculated from the apparent visc-
osity as long as the shear rate is known, and vice versa.

From the flow curve, the rheological parameters can
be calculated using rheological equations. Figure 3 is

Table 2: Mapping of the predicted rheological parameter or related variables and several functions of machine learning applications

No. Predicted variables Machine learning inputs Selected reviewed studies

1 Viscosity
(1) Apparent, relative, and dynamic viscosity in a

flow curve
Shear rate and other variables [21,22,46–62]

(2) Viscosity-composition correlation Composition and other variables [21,22,51–60,38,61–70,39,71,72,41,46–50]
(3) Soft sensor Signals from measurement devices and

others
[40,73–79]

2 Shear stress
(1) Shear stress flow curve Shear rate and other variables [12,18,55,80–86]
(2) Shear stress-composition correlation Composition and other variables [55,80,81,84,87]
(3) Shear stress distribution-geometrical features

correlation
Geometry/size and other variables [19,88–92]

4 Rheological model parameters
(1) Yield stress

(i) Direct prediction Compositions, temperature, or other
variables

[43,93]

(ii) Extended calculation Shear rate and other variables [80–82,84]
(2) Plastic viscosity Compositions or other variables [43,93,94]
(3) Power law parameters Compositions or other variables [50,70,75,95–97]

6  Irfan Bahiuddin et al.



illustrated based on the described method in the previous
studies, showing the graphical illustration for predicting
rheological parameters. The calculation consists of three
steps: (a) training the model, (b) the prediction process,
and (c) calculating the derived parameters based on rheolo-
gical equations. For the training process, the data should
include the input and the target that will be deployed in
the training algorithm and machine learning model. For
flow curve prediction, one of the inputs should be the
shear rate and the output should be either apparent visc-
osity or shear stress. In the training process, the user needs
to determine the hyperparameters first and choose a sui-
table machine learning method, which will be discussed
further in Section 5.1. The optimization algorithm will tune
the parameters within the model. The trained model is then
tested to determine its performance when facing unseen
data. If the performance is acceptable, it can be deployed
in the prediction platform. The shear rate ranges together,

and other inputs can then be inputted into the model to
predict the apparent viscosity or shear stress range. Based
on the obtained flow curve, the derived parameters can be
calculated. If the modeled fluid is a non-Newtonian fluid
with a yield stress, the Bingham plastic equation can be
used [102], formulated as = +τ τ η γ̇yield plastic

, where τ ,
τyield, ηplastic

, and γ̇ are, respectively, shear stress, yield
stress, plastic viscosity, and shear rate. Another possible
equation is the power law model [103], formulated as
=τ kγ̇

n or = −
η kγ̇

n 1( ), where k and np are consistency index
and power law exponent, respectively. Other rheological
equations can also be employed, such as Herschel Bulkley,
biplastic Bingham, and Papanastasiou [104–106]. For the fit-
ting process of the rheological equations to the flow curve,
several studies proposed automatic rheological parameter
estimation methods using metaheuristic methods, such as
particle swarm optimization (PSO) and genetic algorithm
(GA) [84,107,108].

Figure 3: Illustration of an extended calculation of rheological parameter based on the flow curve as the machine learning output.

Machine learning for fluid rheological behavior: A review  7



3.2 Prediction of rheological parameters
with various variables and composition

This group considers the fluids’ compositions and other
variables to represent the material’s rheological behavior.
This kind of modeling scheme can support the material
fabrication or characterization process. If the correlation
between inputs and outputs can be identified usingmachine
learning, the post-processing activity will be easier to per-
form. The input sensitivity analysis can be applied to deter-
mine which variable has the most impact on the rheological
behavior of materials, such as in Torkar et al. [95] and
Fayazi et al. [109]. Nanofluids can be considered the most
advanced field for the application of machine learning in
rheology in the form of dynamic viscosity predictions.
Thermal conductivity is also predicted along the dynamic
viscosity [110–113]. Composition optimization to search for
the best combination for a particular application can also be
one of the possible utilizations. Because of the variety of
probable materials, the challenges of this group’s develop-
ments vary, such as the vast possibility of the inputs and
output configurations, the data training–testing division
methods, and others. Another challenge is that the predicted
variables are associated with other variables, such as the
thermal properties [111,113,114]. Table 2 shows that the stu-
dies included in this group are the most commonly used in
simulation schemes.

3.3 Supporting measurement and
manufacturing system (soft sensor)

This group was intended to deploy machine learning methods
as soft sensors to predict fluid rheological properties. Practical
applications usually involve measurement signals as inputs.
The signal can originate from the devices or measurement
systems where the fluid is applied or processed. One of the
objectives is to determine variables that are not easy to
measure or variables that need additional instrumentation
to measure. For example, in predicting the viscosity of a
device, it is not always simple to measure the fluid’s tempera-
ture, pressure, and various operating conditions. Therefore,
the viscosity needs to be predicted based on the device’s
working condition or the previous calibration or observation
results. For example, Alabi and Williamson [76] indicate the
viscosity of the kraft black liquor in a centrifugal pump using
the pump torque, flow rate, shaft speed, and the pump’s
mechanical status. Padmavati et al. [40] used device and
sensor signals of agitators and reactors to predict the

processed fluid viscosity. This method can also be a solu-
tion to overcome the difficulty in estimating the Mooney
viscosity in rubber processing, as discussed by Zheng
et al. [77,78] and Jin et al. [79].

This method can also be employed to calibrate a mea-
surement device [115]. For example, in biofuel, the neural
network model was applied to predict the kinematic visc-
osity based on the various spectral values of the near-
infrared spectroscopy [73]. Ahadian et al. [74] also used
the capillary rise time of liquids to estimate their surface
tension and viscosity.

3.4 Prediction of rheological parameter
distribution

The estimation of shear stress and viscosity distribution in
a flow channel or tunnel can be a challenging process.
Although computational fluid dynamics can be a solution,
the simulations require considerable computing time, espe-
cially when various geometries are involved. If multiple
sensors are available, making predictions using machine
learning can be one of the alternatives. The geometrical
features, topological features, or parameter sizes are the
main inputs, followed by other fluid movement variables,
such as Reynold numbers [19].

4 Data preparation and
preprocessing

Data preparation for machine learning in rheological mod-
eling involves ensuring the reliability of measurements
and includes activities such as data cleaning, removing
outliers, averaging repeated measurements, and normal-
izing data. The choice between logarithmic or linear scale
normalization depends on the shear rate range, and the
division of data into training and testing sets is crucial to
validate model performance, with options like 70-15-15 or
ten-fold cross-validation techniques for improved results.

The data should be reliable in terms of the measure-
ment system, uncertainties, materials manufacturer, and
preprocessing. Table 3 shows the common activities related
to data preparation, including removing outliers, normal-
izing methods, and dividing training and testing data. Sev-
eral works eliminate the outlier first before further proces-
sing the data [40,116]. If training data consist of several
measurement points in the same configuration in a

8  Irfan Bahiuddin et al.



controlled environment (such as a rheometer), the data
should be averaged first [67,73,117]. Data normalization is
also an essential step to ensure the generalization of the
produced models. Normalization can be carried out for
input and output to standardize input ranges. The minimum
andmaximumnormalized data range (a and b, respectively)
can be any number, such as [0,1] or [−1,1], or [−0.9,0.9] or
others. This normalization process can ensure the data to be
simple and standardized. Most studies employ linear nor-
malization. Therefore, if the input has a logarithmic rela-
tionship with the output, then normalization is employed
for the logarithmic value of the raw data [118,119], which
affects the trained model performance [118]. Other normal-
ization methods include the regularization, standardization,
or z-score normalization by considering the raw data mean
(xmean) and standard deviation (xstd). The advantage of this
method is that the outlier can be handled properly and is
well-suited for data with Gaussian or normal distribution.
However, this method is unable to ensure the data to be
within an exact range. Based on the available normalization
method, because the character of each input is diverse, each
input must be treated differently. For example, the shear
rate range can be normalized using a logarithmic scale,
while other inputs are normalized using a linear scale, as
discussed in the work by Bahiuddin et al. [18].

The shear rate for predicting flow curves can be nor-
malized using a logarithmic or linear scale based on the
shear rate range of the training data, as shown in Table 3.

Figure 4 shows an illustration of logarithmic or linear scale
normalization for shear rate and viscosity-based flow
curves. If the shear rate range as input is wide, covering
the region with a gradually changing gradient, the loga-
rithmic scale normalization can be a suitable choice. Mean-
while, linear scale normalization can be used when the
shear rate range covers a relatively steady gradient or pos-
sesses a relatively constant Bingham model based on plastic
viscosity. The logarithmic scale normalization is suitable not
only for shear rate inputs but also for normalizing the visc-
osity as output [120].

The testing and training data selection is another
important step in validating a model’s performance. The
common method to determine the training and testing is to
split or randomly split the data based on the predetermined
varying percentages, as shown in Table 3. On several plat-
forms, the data are divided into training, validation, and
testing data, especially in the backpropagation (BP)-based
training algorithm. Training and validation data are input
for the training process. Hence, the arrangement can be 70%
for training, 15% for validation, and 15% for testing (also
denoted as 70-15-15), or, in Table 3, mentioned as 85%:15%.
If the model shows high accuracy for the training case but
low accuracy for the testing case, the condition will yield the
so-called overfitting phenomenon. Hence, the model needs
to be reevaluated. Another unusual scenario is when the
model has better accuracy in the testing data compared to
the training data. This scenario is uncommon because the

Table 3: Data preparation and preprocessing activities

Activity Remarks Selected related studies

Preparation Removing outliers [40,78,79,116]
The training data are the average values of the repeated measurement data [67,73,117]
Pearson correlation approach for selecting the independent variables [63]

Normalization Linear normalization/min–max normalization between:
– 0.01 and 0.9 [63]
– −1 and 1 [121–123]
– 0.05 and 0.95 [95]
– 0 and 1 [58,60]
Logarithmic scale/normalization for shear rate and linear normalization for other inputs, suitable
for predicting flow curve

[12,18,84,119,120]

Regularization/standardization/z-score normalization, suitable for data with Gaussian distribution [76]
Division of data Percentage of training and testing data;training data are inputted into training algorithms that

can be used for the training and validation process
80%:20% or (randomly split) [63,124]
60%:40% (Randomly split) [116]
70%:30% (Randomly split) [124,125]
75%:25% (Randomly split) [47,126]
85%:15% (Randomly split) [82,127]
90%:10% (Randomly split) [128]
Test data are manually determined [18,60,86,119]

Machine learning for fluid rheological behavior: A review  9



testing data is usually less accurate than the training data.
Although it could show a good model performance, it may
also indicate that the testing data is not well determined. In
other words, the testing data fails to identify how well the
model performs on the new datasets [121]. Therefore, to
solve this problem, different datasets can be selected manu-
ally [18,60,119]. The ten-fold cross-validation technique can
also be an alternative to improve the model’s performance
further [73]. The amount of training and testing data is also a
critical factor in developing the models. The amount of
training data should be enough to represent the behavior
of the fluids. If the modeled rheological behavior contains a
few variations and a simple relationship, fewer data can be
sufficient.

5 Machine learning methods
selection

Choosing machine learning methods for fluid rheology
involves decisions on model topology, training algorithms,
and optimization techniques. Common models include feed-
forward neural networks (FFNNs) with backpropagation
(BP-ANN) or ELM. BP-ANN is a baseline, while ELM offers
faster training. Other methods, such as ANFIS, RBFNN, SVR,
and PNN, are also considered. Section 5 provides a concise
overview of these models, comparing their strengths and
weaknesses in predicting fluid rheology parameters. It also
briefly touches on the potential of semi-supervised learning
and the necessity of metaheuristic optimization for model
topology. It also emphasizes the importance of reproducibility
in machine learning research through a proposed checklist
and the creation of a comprehensive database.

5.1 Model topologies and training
algorithms

Various aspects need to be considered when selecting
machine learning methods, such as the model topology
or structure, training algorithm, and platform. Table 4
shows the hyperparameters, advantages, and disadvan-
tages of the common methods for predicting variables
and parameters related to fluids rheology. FFNN is the
commonly employed model topology. FFNN can be trained
using a BP algorithm known as BP-ANN or MLP. BP-ANN, as
the classic and popular machine learning algorithm, is
usually employed as the main proposed program and bench-
marking method. The training algorithm can be selected from
variousmethods. Themost well-known approach is the Leven-
berg–Marquardt (LM) because it often shows the most accu-
rate and rapid training time [48]. However, LM tends to have a
high possibility of being trapped at a local solution. The hyper-
parameters include the layer number and the hidden neuron
number in each layer. The layer can also be selected from one
or two hidden layers, depending on whether one hidden layer
has acceptable accuracy [48,63].

In terms of structure complexity, FFNN can be built from
single or multiple hidden layers. A more complex topology
can lead to a longer training time. Therefore, the less-hidden
layer is preferable, considering that almost all fluid rheology
cases can be solved using FFNN with one hidden layer. The
hidden neuron number is usually set at fewer than 20, such as
12 [75], 15 [63], 6 [129], and 9 [130], to achieve acceptable
accuracy in a simple case. In terms of the activation functions,
the best function can be different from one case to another,
depending on the datasets. FFNN can also be trained using
ELM, which has the advantage of a faster training time and
better generalization [18,83,84,90,119,120].

Figure 4: The alternative normalization methods based on the training data shear rate range for the flow curve based on (a) shear stress and (b)
apparent viscosity.
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Other alternative machine learning methods are ANFIS,
SVR, PNN, and RBFNN. ANFIS is another well-known algo-
rithm with comparable accuracy and faster training time
than BP-ANN. This method is also known for its more inter-
pretable nature compared to other black box models. In
several comparative works [54,89,125], the prediction perfor-
mance is better than that of BP-ANN. For kernel-based
methods, SVR and RBFNN have the potential to capture non-
linear patterns in data. SVR has shown its accuracy in sev-
eral works with BP-ANN [82]. However, SVR is less popular
because it is quite challenging to tune the hyperparameters
and can be hard to interpret while employing nonlinear
kernels.

On the other hand, despite the RBFNN potential because
of the fewer adjustable parameters compared to BP-ANN,
several comparative works show its performance lags behind
or, at most, is comparable with other machine learning algo-
rithms [15,60,63,116,131]. PNN is another form of neural net-
work with polynomial equations as the activation functions.
While this method shows its acceptable performance in sev-
eral works [67], the polynomial has several potential pro-
blems, such as interpretability and overfitting. An automatic
feature selection algorithm called GMDH was also proposed
to tune PNN in several works [124,132]. To overcome the over-
fitting possibility, more optimization algorithms, such as GAs,
need to be added to achieve acceptable accuracy [21]. If the
computational cost is not a priority and the parameters
cannot be tuned properly, GMDH PNN can be an alternative
for predicting the fluid rheological behavior.

The common parameters to be evaluated for measuring
the performances of various algorithms are the accuracy of
the training case, testing cases, training time, and testing time.
While the training time represents the complexity of the
training algorithm andmodel structure, the testing time repre-
sents the complexity of the model structure. Compared with
the experimental data, the accuracy and error represent the
model’s performance. While the accuracy of the training is
utilized in the training process, the testing accuracy is crucial
to determine the model performance for unlearned cases.
Some articles have shown a very small error for the training
but not for the testing, such as in the work by Al-Marhoun
et al. [116]. The statistical parameters can be in the form of
either mean squared error (MSE), mean absolute percentage
error (MAPE), or coefficient of determination (R2).

Several selected works are provided in Table 5, con-
taining various examples of machine learning methods.
From those cases, the complexity of a case can be described
based on the data number, the number of input variables,
and the model nonlinearity. For example, RBFNN is usually
not superior when compared with other methods because
it does not match the data in a work that has a high R
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value [133]. After careful review, the work only consists of
80 data, which is a relatively low number of data.

More advanced models can be employed to predict the
rheological properties. The examples can be deep learning
algorithms, such as convolutional neural networks (CNN)
[134], extreme gradient boosting and random forest based
on the gated recurrent unit [135,136], and recurrent neural
networks [137,138]. The CNN has been applied to predict
the creep modulus of cement paste [139]. Cement paste,
especially in the context of its viscoelastic properties and
time-dependent behavior, can exhibit some fluid-like char-
acteristics, but it is not a traditional fluid. Extreme gradient
boosting and random forest were employed to predict soft
clays [140]. Soft, sensitive clay may exhibit solid-like prop-
erties. However, if the clay is subjected to stress or distur-
bance, it can undergo significant changes in its strength and
behavior, resembling a fluid. This phenomenon is often
referred to as quick clay behavior.

5.2 Metaheuristic methods for model
topology optimization

Each model topology requires its own parameters to be
tuned. The parameters that need to be predetermined by
the user are called hyperparameters. The hyperparameters
include the layers, the hidden node number, the activation
function, and others, depending on the selected topology in
the machine learning method employed. Metaheuristic
optimization methods can be applied to search for the
best-hidden node number automatically, such as PSO or
GA. The GA is also applicable for RBFNN to tune the spread
value [147] and GMDH to search for the best configuration
[132]. The metaheuristic method has shown its capability to
improve the model performance by finding the best con-
figuration of the hidden node number in the network [60].
The usual drawback of metaheuristic method applications
is the longer training time. Several examples of topology
optimization are shown in Table 6.

5.3 Semi-supervised and unsupervised
learning necessity

The general training methods are supervised and unsuper-
vised, with a difference in terms of the employed labeled or
unlabeled data in the training process. Almost all of the
discussed methods are supervised algorithms that consider
the model output or labeled data. On the other hand, unla-
beled data can be valuable in viscosity prediction cases,
especially in the rubber mixing process [77,78,149]. Recently,
in the manufacturing industry, various measurements ori-
ginating from the control system have been stored on a
centralized server as a historical database. It is challenging
to manually identify which data are relevant to the changes
in certain product viscosity. Furthermore, the data, such as
temperature distributions, pictures, or videos taken from
the manufacturing process, can be considered unstructured.
Therefore, the data can be treated as unlabeled and input
into machine learning together with labeled data to check
various possibilities, such as clustering or other purposes.
By considering both labeled and unlabeled data for the
training process, the training algorithm can be regarded
as semi-supervised machine learning.

Several studies conducted semi-supervised learning
for the prediction of viscosity in the rubber mixing process
[77]. Incorporating semi-supervised learning in the rubber
mixing process allows for the effective use of both labeled
and unlabeled data. This approach, particularly with clus-
tering algorithms, can enhance the prediction of viscosity
and help identify relevant patterns in the unlabeled data.
Given the limited application of this method in rheological
fluids, there is significant potential for further exploration
and development. ELM and its variants have also been used
because of the shorter training time characteristics [77]. For
example, the just-in-time regularized ELM (JRELM) has
about a 40-s difference with just-in-time SVR [77,79]. The
use of algorithms like JRELM, which offers time efficiency,
suggests that semi-supervised learning can be optimized for
industrial applications where timely data processing is cru-
cial. The broader adoption of this method could lead to more

Table 6: The applied topology optimization methods

No. Topology Optimization algorithm Tuned parameters Ref.

1 GMDH-type PNN GA Hidden layers and bias coefficients [132]
2 FFNNs GA Hidden layer neuron number [54]
3 RBFNN GA The maximum value of the number of neurons and spread [15,133]
4 RBFNN PSO The maximum value of the number of neurons and spread [15]
5 ANFIS PSO Gaussian membership function [148]
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accurate and efficient rheological analysis in various indus-
trial contexts.

5.4 Explainable AI

Machine learning models, particularly in complex domains
like fluid rheology, often face limitations in interpretability.
Traditional machine learning models, while powerful in
prediction, are commonly seen as “black boxes,” providing
little insight into the reasoning behind their outputs. This
lack of transparency can be a significant barrier, especially
in fields where understanding the underlying phenomena is
as crucial as accurate predictions. Explainable AI (XAI)
emerges as a potential solution to this challenge. By making
AI models more interpretable, XAI allows users to under-
stand the decision-making process of these models. For
instance, the use of deep learning for predicting fluid visc-
osity, as seen in the PfAbNet‑viscosity model, becomes more
interpretable through feature attribution analysis [150]. This
analysis reveals how specific biophysical properties influ-
ence the model’s predictions.

Similarly, Shapley Additive Explanations (SHAP) calcu-
lations are being used to identify the impact of each input
on the prediction of viscosity and surface tension in ionic
liquids, aiming to elucidate the decision-making process of
the trained machine learning model [151]. The potential of
XAI is particularly important for predicting fluid viscosity
and rheology, where understanding the physical principles

underlying the predictions is crucial. Despite its impor-
tance, the application of XAI in this field is still relatively
rare, indicating a significant opportunity for further explora-
tion and development across various domains.

5.5 Reproducibility

Reproducibility is an important part of machine learning
for future improvement and to ensure the validity of the
proposed method [152]. This issue becomes more apparent,
considering these studies involve at least two different
fields, such as computer science and fluid rheology. Several
works have not included important details to enable the
reproduction of the applied machine learning methods.
Meanwhile, although someworks have tried to compare their
proposed models with the previously proposed methods, the
benchmarkedmodels have not been described in detail, espe-
cially regarding the training settings and topology. Therefore,
a checklist is presented in Table 7, showing the information
an article needs to provide to ensure reproducibility.

A database of fluids for further usage of machine
learning can support the future reproducibility of the pro-
posed works. The database can be a collection of the training
data or the models obtained in each case. Therefore, the
models should be downloadable to enable further applica-
tions. A work in ionic liquids has started the collection of the
dataset in various instances to perform a prediction when
an unlearned composition is introduced [153].

Table 7: The suggested available information to maintain the reproducibility in a research article about rheological parameter prediction using
machine learning

Steps The suggested available information

Data acquisition • Materials composition, manufacturer, preparation, and fabrication
• Characterization procedures and instrument details
• Citation is needed if the data is taken from other sources
• The data range of the inputs and outputs
• Data distribution (if relevant)

Data preprocessing • Normalization method
• Data selection from repeated experimental data
• Outlier removal
• Division methods of the training and testing data

Training process • Simulation platforms, such as Matlab, Python, Weka, Julia, or R
• Source of the code for the training algorithm and the modification details (if any)
• Training time (if relevant)

Model topology • Input and output description
• Detailed setting of the obtained topology/structure (such as layer number, hidden neuron number, and activation
function, depending on the selected network topology)

Post-processing • Extended calculation of other derived parameters (if relevant)
• Model performances or accuracies of the training and testing data
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6 Conclusions and future research
directions

This review explores the use of various machine learning
methods in modeling fluid rheology. It covers a range of
behaviors and predictive techniques, including flow curve
modeling and different input–output schemes for fluid
characterization. The maturity of these methods in several
applications is highlighted, with a focus on flow curve
modeling and alternative schemes for fluid characteriza-
tion. The review indicates that the choice of the most effec-
tive machine learning model depends on factors like case
complexity. Simple models like ANN, ELM, and SVR are
adequate for scenarios with fewer variables and data
points and are applicable in areas like nanofluids and
smart materials. However, complex data or behaviors
require more advanced hybrid algorithms. These are par-
ticularly useful in applications like ionic liquids, drilling
fluid characterization, and polymerization.

The conclusion of the review emphasizes the signifi-
cance of training time in machine learning applications,
suggesting algorithms like ELM for situations where
rapid processing is crucial. It specifically recommends
time-dependent methods like recurrent neural networks
and long short term memory for modeling complex
behaviors in non-Newtonian fluids, where temporal
dynamics are essential. Adaptive algorithms are high-
lighted as valuable for processes that undergo frequent
changes. Moreover, the review points out the relevance
of unsupervised algorithms in handling unlabeled data,
which is particularly pertinent in industrial settings
where data from material processing might not be pre-
categorized.

The survey acknowledges the potential for further
exploration in this field, particularly in developing models
for linking microstructure to rheological properties using
deep learning. The possibility of semi-supervised or unsuper-
vised machine learning methods, especially in the polymer
industry, and the concept of inverse modeling for predicting
compositions are also highlighted. The review concludes with
the possibility of employing explainable AI to make machine
learning models more interpretable.
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