Universiti Teknologi Malaysia Institutional Repository

An exploratory simulation study and prediction model on human brain behavior and activity using an integration of deep neural network and biosensor Rabi antenna

Pham, Nhat Truong and Bunruangses, Montree and Youplao, Phichai and Garhwal, Anita and Ray, Kanad and Roy, Arup and Boonkirdram, Sarawoot and Yupapin, Preecha and Jalil, Muhammad Arif and Ali, Jalil and Kaiser, Shamim and Mahmud, Mufti and Mallik, Saurav and Zhao, Zhongming (2023) An exploratory simulation study and prediction model on human brain behavior and activity using an integration of deep neural network and biosensor Rabi antenna. Heliyon, 9 (5). pp. 1-12. ISSN 2405-8440

[img] PDF
2MB

Official URL: http://dx.doi.org/10.1016/j.heliyon.2023.e15749

Abstract

The plasmonic antenna probe is constructed using a silver rod embedded in a modified Mach-Zehnder interferometer (MZI) ad-drop filter. Rabi antennas are formed when space-time control reaches two levels of system oscillation and can be used as human brain sensor probes. Photonic neural networks are designed using brain-Rabi antenna communication, and transmissions are connected via neurons. Communication signals are carried by electron spin (up and down) and adjustable Rabi frequency. Hidden variables and deep brain signals can be obtained by external detection. A Rabi antenna has been developed by simulation using computer simulation technology (CST) software. Additionally, a communication device has been developed that uses the Optiwave program with Finite-Difference Time-Domain (OptiFDTD). The output signal is plotted using the MATLAB program with the parameters of the OptiFDTD simulation results. The proposed antenna oscillates in the frequency range of 192 THz to 202 THz with a maximum gain of 22.4 dBi. The sensitivity of the sensor is calculated along with the result of electron spin and applied to form a human brain connection. Moreover, intelligent machine learning algorithms are proposed to identify high-quality transmissions and predict the behavior of transmissions in the near future. During the process, a root mean square error (RMSE) of 2.3332(±0.2338) was obtained. Finally, it can be said that our proposed model can efficiently predict human mind, thoughts, behavior as well as action/reaction, which can be greatly helpful in the diagnosis of various neuro-degenerative/psychological diseases (such as Alzheimer's, dementia, etc.) and for security purposes.

Item Type:Article
Uncontrolled Keywords:Biosensors on human brain/action, Brain neural network, Brain-Rabi antenna, Deep brain sensors, Deep learning, Sensitivity, Simulation
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:107547
Deposited By: Widya Wahid
Deposited On:23 Sep 2024 04:56
Last Modified:23 Sep 2024 04:56

Repository Staff Only: item control page