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The plasmonic antenna probe is constructed using a silver rod embedded in a modified Mach-

Zehnder interferometer (MZI) ad-drop filter. Rabi antennas are formed when space-time control 
reaches two levels of system oscillation and can be used as human brain sensor probes. Photonic 
neural networks are designed using brain-Rabi antenna communication, and transmissions are 
connected via neurons. Communication signals are carried by electron spin (up and down) 
and adjustable Rabi frequency. Hidden variables and deep brain signals can be obtained by 
external detection. A Rabi antenna has been developed by simulation using computer simulation 
technology (CST) software. Additionally, a communication device has been developed that uses 
the Optiwave program with Finite-Difference Time-Domain (OptiFDTD). The output signal is 
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plotted using the MATLAB program with the parameters of the OptiFDTD simulation results. The 
proposed antenna oscillates in the frequency range of 192 THz to 202 THz with a maximum gain 
of 22.4 dBi. The sensitivity of the sensor is calculated along with the result of electron spin and 
applied to form a human brain connection. Moreover, intelligent machine learning algorithms 
are proposed to identify high-quality transmissions and predict the behavior of transmissions in 
the near future. During the process, a root mean square error (RMSE) of 2.3332(±0.2338) was 
obtained. Finally, it can be said that our proposed model can efficiently predict human mind, 
thoughts, behavior as well as action/reaction, which can be greatly helpful in the diagnosis of 
various neuro-degenerative/psychological diseases (such as Alzheimer’s, dementia, etc.) and for 
security purposes.

1. Introduction

Nowadays, the diagnosis of various neuro-degenerative and psychological diseases through multi-disciplinary approaches is one 
of the topics of current research interest [1,2]. Multi-disciplinary approaches include machine learning, neural networks or deep 
learning, biosensor, bioelectronics, and many more. Our main goal is to focus on human mind, thoughts, behavior, and action/re-

action. Therefore, our current work is essentially an extensive simulation study and a corresponding disease prediction model on 
the human brain through the integration of deep neural network and biosensor Rabi antennas, targeting on human mind, thoughts, 
behavior and actions.

In general, super-sensitive quantum sensors are created for brain tissue that might be able to detect any brain disorders or diseases 
such as Alzheimer’s, Dementia, Parkinson’s disease, and even brain cancer by identifying the spots across the entire brain where the 
respective traversing speed of the signals is significantly slowing down [3]. In soft computing, a neural network (or deep learning) 
is basically a tool that consists of four major components: inputs, weight factors, a bias, and an output [4]. The data is passed from 
one layer to the next nearest neighboring layer, denoted as a feed-forward neural network. Moreover, a neural network can make 
complex decisions based on the output of previously taken decisions (or layers). Interestingly, a photonic neural network is designed 
using brain-Rabi antenna communication, while the corresponding transmission is connected by neurons.

The Rabi antenna is a device designed using a modified add-drop multiplexer that relies on low-level energy oscillations of a 
two-level system. In recent years, Rabi optical vibration has been studied as a coherent nonlinear interaction between light and 
matter. When a two-level atomic system with exciton resonances is introduced inside microgravity, the coupling between the two-

level transitions due to resonance and cavity mode causes Rabi splits and Rabi oscillations. The electromagnetic field can be used to 
manipulate a single two-stage quantum arrangement by modulating its amplitude, frequency, and envelope curve. In this article, the 
Rabi antenna circuit is integrated with brain signal communication, which is transferred by neurons. The change in neuron energy 
affects the transmission signals within the network, and these signals can be measured and detected externally. Low-level neuron 
signals can be configured to represent human mind, thoughts, behavior and action/reaction signals, which can be distinguished by 
electron spins or Rabi frequency oscillations. The quantum neural network can be used to retrieve and recover hidden layer signals 
within the deep brain, which can be interpreted to generate human cognition and behavior.

Electroencephalography (EEG) measures the electrical activity in the brain in the form of the flow of current in the neurons. It is 
a direct measurement method in neuroimaging. The measurement is carried out by placing the electrodes on the scalp. The measured 
data is then processed using amplifiers and analog/digital converters [5]. EEG signals are in the range of around 4 Hz to 100 Hz. 
Microring resonators have applications in various fields such as sensors, quantum communication, teleportation, and black hole [6,7]. 
In addition, micro-electromechanical systems (MEMS) technology has shown great potential for various kinds of sensors [8,9]. Rabi 
oscillation generation or Rabi antenna using a microring resonator is given by [10,11]. Where the Rabi oscillation was generated 
without space-time. The present work consists of a space-time signal at the input port. In brain sensing, the transmitted signals from 
neurons are detected by electrodes. The electrodes are placed in the form of patches over the scalp. Low-voltage signals in the form 
of spikes are captured and converted into electronic signals. A review on brain sensing technologies is done by Robinson et al., where 
various sensing technologies such as electrical sensing and optical brain computer interfaces are discussed in detail [12]. Wearable 
dry electrode EEG sensing was presented, where multimodal EEG over the patient’s head is recorded and analyzed. The technique 
used provided better results, and while capturing data patient also felt comfortable [13]. No surgery is needed to process the EEG 
signal using a brain-computer interface. A brain-computer interface (BCI) system requires a sensor, decoder, and actuator, which has 
applications in paralysis [14]. Along with brain-computer interface (BCI), computer-brain interface (CBI) techniques are also being 
developed. Conscious brain-to-brain (B2B) communication is performed using EEG, where data in the form of 0 and 1 are transmitted 
and received. Experimentally, two human minds communicated directly [15]. Another method of teleportation is using the space-time 
control method [16]. The Rabi antenna can have applications in human-like stereo sensors [17]. The human brain usually consists of 
cells that can communicate via wireless and wired connections and can transmit via plasmonic antennas or liquid-core waveguides. 
The electro-optical transducer (WGM) can penetrate the brain and cells at THz and probe the binding effect between electrons and 
brain cells to reflect the system. When light combines with the Au/Ag lattice, it in principle produces plasmon waves, and the 
collision of plasmon waves (plasma) causes dipole oscillations. Changes in the oscillation frequency (wavelength) of the sensor array 
through the brain cells can be examined by recognizing the output and interpreting the word. The interaction between plasma waves 
and brain cells can be observed at the sub-level using polarization patterns or output gate spin sensors. Various schemes, such as 
2

electrical, optical, and magnetic spin detection, can be applied to the output connection. The applied external modulation can also 
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Fig. 1. (a) Schematic diagram. Plasmonic antenna probe uses a silver bar embedded in a modified add-drop filter within a Mach Zehnder interferometer (MZI). 
(b) Equivalent circuit. (c) Rabi antenna probes for human mind, thoughts, behavior and action/reaction interpretation.

be changed via the additional port. The proposed system has the potential to be a quantum-level sensor, especially for the study 
of human mind, thoughts, behavior and action/reaction. In this work, a plasmonic Rabi antenna is designed and simulated using 
OptiFDTD and CST (computer simulation technology) software. The system consists of an MZI, and the center ring is embedded with 
silver (Ag) gratings. WGM is achieved, and Rabi antenna formation takes place. The designed antenna has applications in deep brain 
sensors. Fig. 1a shows the proposed system design. The future work will focus on EEG (electroencephalography) signals that can be 
applied at the modulation port of a microring system, where low-frequency EEG signals will be achieved for human mind, thoughts, 
behavior and action/reaction using the machine learning method.

2. Theoretical background

2.1. Plasmonic model

We propose using a plasmonic microring antenna network to sense changes in wavelength in the brain and a flat neural network 
(1 hidden layer) to process and interpret the output. More specifically, the proposed brain sensor circuit is realized by forming a 
flat distributed sensor network using distributed metamaterial antennas. Our motivation is to develop a brain-interface circuit device 
that overcomes limitations presented by bioelectrical signals, such as scalp electrode placement and data acquisition, EEG pattern 
variability, scalability to large populations, and ECG pattern heritability. Finally, we argue that the proposed system has potential 
for quantum-level sensors. Furthermore, applying deep learning circuits may even predict unknown signals and interpret dreams. 
Traditional approaches have not been able to achieve this. Based on the results of several experiments performed using novel deep 
learning (DL) circuits to predict dreams and develop unknown human-like brain sensors, signals can be encoded. Fig. 2 depicts 
a flowchart of the process of the plasmonic Rabi antenna and deep learning (DL) circuits. As shown in Fig. 2, the process of the 
3

plasmonic model is on the left side, while the process of the DL model is on the right side. First, the plasmonic Rabi antenna is 
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Fig. 2. Flowchar of the process of the plasmonic Rabi antenna and DL circuits.

designed and simulated to generate data samples. Then a DL circuit is constructed to train a DL model using the generated data. 
After that, the trained DL model is used for prediction.

The Rabi cycle in a two-level system is the variation of the population of transition states in a given optical field, which is 
proportional to the coupling intensity between the light and the atomic transition and the light field amplitude. Rabi oscillations 
between the two levels of a two-level system illuminate the resonant light where the transition occurs, at Rabi frequency. The incident 
light is tuned to the generalized Rabi frequency. The detuning of the incident light occurs at the generalized Rabi frequency. Fig. 1b 
shows the space-time distortion control circuit using silicon Mach Zehnder interferometer (MZI) embedded microring resonators. 
The silver bars are applied to the center ring resonator to form the antenna. The space-time light fields are input into the circuit 
at the MZI ports. The optical path difference of the traveling light fields within the two side rings can be controlled and vanished 
by the successive filtering operation. When the space-time distortion of light fields within the circuit has vanished, it results in the 
Rabi oscillation, where photons are squeezed from the circuit center. The embedded silver bars are coupled by the squeezed photons, 
where the dipole oscillation occurs. The plasma frequency is known as the Rabi frequency, which can be applied to the quantum 
antenna.

The input signal is the polarized laser [18], which is given by an equation (1).

𝐸𝑖𝑛 =𝐸0 ⋅ 𝑒𝑥𝑝(−𝑖𝑘𝑧𝑧) (1)

where 𝑘𝑧 =
2𝜋
𝜆

is the wave number of the wave vector in the z-axis, 𝜆 is the wavelength, and 𝐸0 is the initial amplitude of the field, 
and 𝑧 is the propagation distance in the z-axis.

The propagation of light pulse within the nonlinear material and in refractive index (𝑛) was given by [18] as shown in equation 
(2) below:

𝑛 = 𝑛0 + 𝑛2𝐼 = 𝑛0 +
𝑛2
𝐴𝑒𝑓𝑓

𝑃 (2)

where 𝑛0, 𝑛2, 𝐼 , 𝑃 , and 𝐴𝑒𝑓𝑓 are the linear and nonlinear refractive indices, optical intensity and optical power, effective core area, 
respectively.

The plasma WGM of electron oscillation is given using Drude model, which was given by [18] as shown in equation (3):

𝜖(𝜔) = 1 −
𝑛𝑒𝑒

2

𝜖0𝑚𝜔
2 (3)

where 𝑛𝑒, 𝑒, 𝜖0 and 𝑚 are electron density, electron charge, relative permittivity and mass of electron respectively. 𝜔 is angular 
frequency. Plasma frequency is given by equation (4):

𝜔𝑝 =

√
𝑛𝑒𝑒

2

𝜖0𝑚
(4)

The microring system was given by [18] as shown in equations (5) and (6):

𝐸𝑡ℎ =𝑚3𝐸𝑖𝑛 +𝑚4𝐸𝑎𝑑𝑑 (5)

𝐸𝑑𝑟𝑜𝑝 =𝑚5𝐸𝑎𝑑𝑑 +𝑚6𝐸𝑖𝑛 (6)

where 𝐸𝑡ℎ, 𝐸𝑖𝑛, 𝐸𝑎𝑑𝑑 and 𝐸𝑑𝑟𝑜𝑝 are throughput port, input port, add and drop port respectively. 𝑚3, 𝑚4, 𝑚5, and 𝑚6 are constants, as 
4

given in [19].
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The electron intensities at ports 1 and 2 are given by equations (7) and (8).

𝐼𝑇ℎ

𝐼𝑖𝑛
=

[
𝐸𝑇ℎ

𝐸𝑖𝑛

]2

(7)

𝐼𝑑𝑟𝑜𝑝

𝐼𝑖𝑛
=

[
𝐸𝑑𝑟𝑜𝑝

𝐸𝑖𝑛

]2

(8)

The Rabi frequency was given by [10] as shown in equation (9):

𝐹𝑅 =
|||||
𝐸0𝜇12

ℎ

2𝜋

||||| (9)

Which is related to electric field equation of (𝑟) = 𝐸0(𝑧) = 𝜗𝐴(𝑧)𝑒𝑖𝛽0𝑧, and 𝜗 =
( 𝜇0
𝜖0

) 1
4
(√

2𝑛0
)
, where 𝜇0 and 𝜖0 permeability and 

permittivity in vacuum. 𝑛0 is linear refractive index. 𝛽0 =
𝜔𝑛0
𝑐

is the propagation constant, 𝑐 is speed of light and 𝐴(𝑧) is complex 
amplitude [10].

Following the MEMs concept, the circuit in Fig. 1c can be fabricated and formed as the sensing probe for deep brain sensors, 
in which the quantum antenna operation can be applied. The interference between the deep brain signals and antenna propagation 
fields can be probed and detected, where in this case the quantum signals are formed by spin wave propagation, which is obtained at 
the through and drop ports, respectively. The outputs are 90◦ phase difference, which presents the two sides of time. The outputs in 
terms of spin density sensitivity are leveled by spin up (0) and spin down (1). In operation, we have proposed human mind, thoughts, 
behavior and action/reaction detection. Using the space-time distortion criteria, when the Rabi oscillation of the circuit in Fig. 1c 
occurred, the quantum antenna was in operation. Hence, deep brain signals are obtained. In application, we have proposed human

mind, thoughts, behavior and action/reaction detection. When the Rabi oscillation occurs, the quantum antenna is in operation. The 
deep brain signals can be retrieved in terms of spin up and spin down, respectively. The use of a quantum sensor related to deep 
brain signals can be realized, which is useful for quantum deep learning and sensor applications.

2.2. Deep learning model

In this paper, we present a brain interface based on deep learning circuits using distributed metamaterial antennas. The idea 
is to create deep learning circuits from distributed metamaterial antennae and use spatiotemporal functional control to enable the 
interpretation of brain signals. The manuscript presents a distributed microantenna circuit configuration while reporting extensive 
evaluation results. The manuscript introduces the experimental setup, dataset, training, and evaluation processes. An optical neural 
network has been developed using brain-Rabi antenna communication. Transmission is connected through neurons. Communication 
signals are transmitted by electron spins (up and down) and adjustable Rabi frequencies. Hidden variables and deep brain signals 
can be obtained by external sensing. In particular, this work includes extensive simulation studies on the development of Rabi 
antennas. In addition, it provides intelligent machine learning algorithms to identify transmission quality and predict the behavior 
of transmission in the near future.

In this section, we aim to design a prediction model to forecast the time series or sequential data of the time domain of the 
Rabi Antenna. There are many methods that use forecasting time series data like simple exponential smoothing, smoothing average, 
auto-regressive integrated moving average, and others. With the development of neural networks and deep learning, recurrent neural 
network (RNN) [20] and its variants, especially long short-term memory (LSTM) [21,22] network that has been investigated and put 
attention in many sequential problems, such as natural language processing, video processing, speech processing, time series, etc. 
On the other hand, although the RNN is also an artificial neural network for processing sequential data or time series, it suffers from 
the problem of vanishing and exploding gradients. Therefore, in this study, we focus on designing an LSTM network for time series 
prediction using time domain data of the Rabi antenna because it overcomes the limitation of RNN.

Long short-term memory is first presented by Hochreiter & Schmidhuber in [21] to overcome the vanishing and exploding 
gradients problem in RNN. Each LSTM cell can be computed and updated as equations (10)–(15):

𝑓𝑡 = 𝑆𝑔
(
𝑊𝑓𝑋𝑡 +𝑈𝑓ℎ𝑡−1 + 𝑏𝑓

)
, (10)

𝑖𝑡 = 𝑆𝑔
(
𝑊𝑖𝑋𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖

)
, (11)

𝑜𝑡 = 𝑆𝑔
(
𝑊𝑜𝑋𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜

)
, (12)

𝑐𝑡 = 𝑇𝑔
(
𝑊𝑐𝑋𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐

)
, (13)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡, (14)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑇𝑔(𝑐𝑡), (15)

where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝑐𝑡, 𝑋𝑡 and ℎ𝑡 represent the input gate, forget gate, output gate, cell state with a self-recurrent, input vector, and 
hidden state at the time step 𝑡, respectively. Besides, 𝑆𝑔 and 𝑇𝑔 denote the sigmoid and tanh activation functions, the (⋅) operator is 
5

the element-wise product. The calculation inside the LSTM cell can be defined in four steps. Firstly, the forget state is computed as 
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equation (10). Secondly, the input and output states are obtained in a similar way as equations (11) and (12), respectively. Thirdly, 
the memory cell state is updated by obtaining equations (13) and (14). Finally, the hidden state or the cell output is got by equation 
(15). It is clear that the LSTM is different from RNN because the ℎ𝑡−1 is not entirely used in each time step 𝑡 in the LSTM while the 
RNN is. In addition, the 𝑐𝑡 regulates the time dependency and information flow rather than the other way around. As a result, when 
these additive connections are combined with the forget gate 𝑓𝑡, the problems of vanishing and exploding gradients are alleviated. 
Taking together, the LSTM tackles the problem that appears in almost all the standard RNNs. Hence, in this study, LSTM is used to 
design a deep learning-based model for forecasting the time domain data of the Rabi antenna.

3. Results and discussion

3.1. For plasmonic circuit

Quantum communication involves transmitting information using the principles of quantum physics. This information is pro-

cessed in the form of quantum bits, so-called qubits, which can be distributed within the network. There are many ways to transfer 
information within a network. One method of transmitting information is through the use of spin wave carriers. In spin waves, 
magnetic moments collectively move within a magnetically ordered material. It plays an important role in spintronics and is used 
as a spin current carrier that represents the angular momentum motion of the spin. Spin currents can be generated using surface 
plasmons. The movement of charges in surface plasmons generates electromagnetic fields both inside and outside the metal called 
surface plasmon polaritons. Surface plasmon polaritons form the basis of plasmonic circuits and can also be manipulated like photons, 
leading to the design of plasmonic circuits. Plasmonic circuits are effectively used to guide and confine light below the diffraction 
limit.

The system is initially configured with optiFDTD. This system consists of panda rings embedded in the MZI. The input and 
throughput ports are on the top branch of the MZI and the add and drop ports are on the bottom branch. Structures are simulated to 
achieve WGM in the central ring. OptiFDTD results are then extracted and plotted using MATLAB. The MZI material is Silica/Silicon 
(Si). The center ring of microring is embedded with silver bars. The input is the polarized laser of wavelength 1.51 μm which is 
applied at the input port of the MZI. The input wave propagates half-half into the upper and branches of MZI. The light couples 
into the center ring of radius 2.26 μm and side rings of radius 1.0 μm. Again, light combines at the output port of the MZI. Fig. 1a 
shows the proposed system. The simulated results of the system are shown in Figs. 3a and 3b. Fig. 3a presents the electric field result 
and Fig. 3b is the intensity result. The WGM is formed due to the nonlinear effects of two side rings. The electrons are trapped with 
silver nano bars. This is given by the Drude model in equation (3). Figs. 3c, 3d, and 3e summarize the WGM and outport results 
in the frequency domain, wavelength domain, and time domain, respectively. In Fig. 3c the WGM frequency and MZI output port 
frequencies are 199.4 THz and 203.5 THz with intensity values of 10.08 mW/μm2, 9.97 mW/μm2 respectively. Fig. 3d represents 
the WGM wavelength and MZI output port wavelength of 1.50 μm and 1.47 μm respectively. The intensity values are slightly higher 
in magnitude at WGM. The same system is designed using CST (computer simulation technology) software. The substrate material is 
silicon of refractive index 11.0 [23]. The antenna is designed in a similar way to [23]. The optimized parameters are given in Table 1. 
The antenna is simulated for the frequency range of 192–202 THz. The waveguide port is assigned. The CST results are shown in 
Figs. 4a–4c. The antenna is simulated for different substrate heights as 3.5 μm, 6.5 μm and 12.5 μm. Table 2 shows the compared 
results for different substrate heights. Fig. 4a shows the reflection coefficient or return loss of the designed antenna. For good results, 
the S11 values below -10 are considered. The resonating frequencies are 193.22 THz, 195.58 THz, and 201.44 THz with a return 
loss of -20 dB, -18 dB, and -38 dB, respectively at 3 frequencies. The maximum achieved bandwidth is 0.86 THz. Fig. 4b shows 
the Gain of the designed Rabi antenna. From Figs. 4a, 4b, and Table 2, it is clear that the best results are achieved when substrate 
height is 12.5 μm. When substrate height increases antenna gain increases. The maximum achieved gain is 22.72 dBi and maximum 
directivity is 22.58 dBi and the efficiency is 64.8%. Fig. 4c shows the directivity plots of the designed antenna system at 193.22 THz 
resonating frequency. Two side lobes (east and west) in Fig. 4c indicate Rabi oscillation. Any two-level quantum system can be used 
to simulate qubits. This task is important in quantum computing. This is crucial as had it not been Rabi, it could not have been used 
for the human mind, thoughts, behavior, and action/reaction. Rabi vibration is the main process used to manipulate qubits. Rabi 
oscillation provides an important tool for implementing quantum gates that perform basic logic operations on two qubits. Figs. 4a–4c

are plotted using CST software. The data is extracted from CST and then plotted in MATLAB to achieve better graphical results. The 
designed Rabi antenna is compared with existing literature antennas also as given in Table 3. Fig. 4d indicates the Rabi oscillation 
that confirms the two-level system. The system is simulated 10,000 times. The system collapses around 1.7 fs (femtosecond). The rabi 
oscillation is explained in more detail in [24]. Fig. 4e shows the electron spin for uplink and downlink communication. Where in this 
case the quantum signals are formed by the spin wave propagation, which is obtained at the through and drop ports, respectively. 
The output is the difference between the 90 phases, presented as the bright and dark signals in Fig. 4f. The output in terms of spin 
density sensitivity is leveled by spin up (0) and spin down (1). Each Rabi switching has 2-quantum bits(0, 1), which randomly switch 
and localize on two sides of time, positive, and negative. Each piece of information has many quantum bits. However, the same 
information can be resonant and recovered promptly by the projection on two sides of time. The memory has never been filled up 
by the Hilbert space (time sequence) arrangement. Memory will be lost after death. Fig. 4g shows the sensor sensitivity which is 
calculated from the slope of intensity and input power. The obtained value is 1.66 μm−2. The input power is varied from 1 mW to 10 
mW. The gain, efficiency, and directivity plots for 12.5 μm substrate height are plotted. The proposed Rabi antenna has the highest 
6

gain in comparison to the existing antennas (Table 2). Efficiency is around 65% and also better than [25].
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Fig. 3. (a) Transmission profile. (b) Electron distribution. (c) WGM results with frequency domain graph of WGM and output port. (d) WGM results with wavelength 
domain graph of WGM and output port. (e) WGM results with time domain graph of WGM and output port.

In this present work, the substrate thickness of 12.5 μm is selected. This selection reflects that the efficiency is maximum and 
values of Gain, bandwidth, directivity are more. When thickness increases, gain increases as well.

3.2. For deep learning circuit

The LSTM network was used to forecast the amplitude of time domain data from the Rabi antenna in this experiment. The data 
has 10,000 samples corresponding to 10,000 time-based steps. The data is then divided into training and testing subsets: train on the 
first 90% of the sequence and test on the remaining 10%. The training data is normalized to acquire zero mean and unit variance for 
a better prediction and to avoid the training from diverging. Standardize the testing data, it is also done at the prediction stage using 
the same parameters as the training data.

To anticipate the values of future time steps in a series, specify the replies to be training sequences with values shifted by a one-

time step. At each time step of the input sequence, the LSTM network learns to expect the value of the next time step. Predictors are 
training sequences in which the last time step is not included. The next step is to build an LSTM regression network with 200 hidden 
units. The optimizer is Adam, with a number of epochs of 250, a learning rate of 0.001, and a learning rate schedule that decreases 
by a factor of 0.2 after 125 epochs. The gradient threshold is also set to 1, which prevents the gradients from growing. It should 
be noted that the hyperparameters and optimal structure of the proposed deep learning model are tuned using a grid-search-based 
7

method. The hyperparameters are reported based on the highest performance of the proposed deep learning prediction model.
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Fig. 4. (a) Compared antenna S11 plots. (b) Compared antenna Gain plots [maximum gain is 22.4 dBi when substrate height is 12.5 μm]. (c) Directivity is 24.2 dBi, 
at 193.22 THz. At this frequency the main lobe direction is at 90◦ . The angular width (3 dB) is 8.3 degree. The result is plotted in CST microwave studio. (d) Rabi 
oscillation results confirm the two-level system oscillation. (e) Plot of electron spins and input power for quantum sensors that can be used for human mind, thoughts, 
behavior and action/reaction sensors electron spins of 1.6 μm−2(mW)−1 . (f) Plot of electron spins and input power for quantum sensors that can be used for human 
mind, thoughts, behavior and action/reaction sensors Entanglement of 1.6 μm−2(mW)−1 . (g) Plot of electron spins and input power for quantum sensors that can be 
used for human mind, thoughts, behavior and action/reaction sensors sensitivity (bottom) of 1.6 μm−2(mW)−1 .
8
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Table 1

Parameters used for Simulation [23,24].

Parameter Symbol Value Unit

Input wavelength 𝜆 1.51 μm

Input power P 1–10 mW

Center ring radius R1 2.26 μm

Small rings radius R2 1.0 μm

Coupling coefficient 𝜅 0.60–0.70

Si refractive index 𝑛𝑆𝑖 3.47

Silver refractive index 𝑛𝐴𝑔 0.14

Silver bar length L 0.75 μm

Silver bar width W 1.5 μm

Silver bar thickness D 0.55 μm

Metallic film area A 1.55 × 3.0 μm2

Waveguide loss 𝛼 0.5 dB.(mm)−1

Effective core area 𝐴𝑒𝑓𝑓 0.30 μm2

Mass of electron m 9.11 × 10-31 Kg

Electron charge e 1.6 × 10-19 Coulomb

Permittivity of free space 𝜖0 8.85 × 10-12 Fm−1

Si dielectric constant 𝜖𝑟 11.9

Table 2

Antenna result comparison.

Parameter Substrate thickness

3.5 μm 6.5 μm 12.5 μm

Resonating frequency (THz) 193.39, 195.72, 197.95, 201.66 193.0, 195.3, 198.96, 201.44 193.22, 195.58, 201.44

Resonating wavelength (μm) 1.55, 1.53, 1.51, 1.48 1.55, 1.53, 1.50, 1.48 1.55, 1.53, 1.48

Bandwidth range (THz) 193.01-194.01=1.0

195.40-196.23=0.83

197.64-198.23=0.59

201.30-202.17=0.87

192.68-193.4=0.72

194.95-197.25=2.3

198.42-199.39=0.97

201.15-201.82=0.67

192.75-193.57=0.82

195.2-196.06=0.86

201.06-201.80=0.38

Gain (dB) Max gain of 17.31, 16.78, 16.79, 16.60, 17.31 19.66, 19.44, 18.58, 20.08 Max gain 22.31 22.31, 22.72, 22.01

Directivity (dBi) 19.48 22.19 24.58

Efficiency radiation Max. efficiency of 61.0% Max efficiency of 64.8% Max efficiency of 64.8%

Table 3

Comparison with existing antenna’s.

Reference Frequency Gain Directivity Efficiency (%)

[26] 180–230 THz 10 dB (realized gain) 8 dBi –

[27] 0.5–1.5 THz 12.67 dB – –

[28] 0.835, 0.635, 0.1 THz

[Bw=24.3, 17.3 and 1.8 GHz]

16.37, 16.52 and 15.7 – 58.4, 52 and 52

[29] 190–200,

BW=5 THz

– 8.6 dBi at 193.5 THz –

[30] 180–200 THz,

BW=20 THz

9.03, 9.08

[realized gain]

1550 nm

10.00, 10.32 92.25%, 92.89%, Area=1200*950 nm2

[31] 150–400 THz

193.5 (1550 nm),

229 (1310 nm),

315 THz (850 nm)

4.67, 7.26, 4.8 – Foot print area=450*625 nm2

[32] 190–200,

[190.9–198.1, BW=7.2 
THz

– 9.57, 8.6, 7.85 dBi at 191, 
193.5, 198 THz

–

[25] 170–230, 175, 185, 205, 
220.

>9 dB – 40%

[33] 180–220 THz

2.58%

(192.5–197.3 THz)

– 8.34, 8.6, 9.69 dBi at 192.5, 
193.5 and 197 THz

–

Proposed Rabi antenna 192–202 THz,

max bandwidth of 0.86 THz

Max Gain 22.4 dB Max directivity=24.6 dBi 64.8%
9
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Fig. 5. (a) Plot of training time series with the forecasted values. (b) Comparison of the forecasted values with the test data. (c) Plot of training time series with the 
forecasted values after updating the LSTM network. (d) Comparison of the forecasted values with the test data after updating the LSTM network. (e) Plot of error bars 
with 𝑅𝑀𝑆𝐸 = 2.3332(±0.2338).

After training the LSTM model, we used trained LSTM to predict the future time steps in a series using the test data as the 
input. Fig. 5a displays the training time series with the forecasted values. In Fig. 5a, the blue line is the observed or the historical 
data whereas the red line with the dot is the predicted future time steps in series. It is clear that the LSTM network can learn the 
characteristics of the time domain data from Rabi antenna to predict the next time steps using the historical data. Here, on the other 
hand, the LSTM network can also be used to explain the operation of the brain through the time domain data resulting from the 
Rabi antenna. Fig. 5b shows the comparison of the forecasted values with the test data with the root mean square error (RMSE) of 
97.2792.

The network state is then updated with observed values, and the time series of time domain data is forecasted once more. The 
training time series with the anticipated values after updating the network is shown in Fig. 5c. The projected future time steps of time 
domain data diverge somewhat from the raw time domain data, as seen in Fig. 5c. In addition, after upgrading the LSTM network, 
we compare the anticipated values to the test data once more. With an RMSE of 2.1634, the result is shown in Fig. 5d. Finally, the 
plot of error bars with 𝑅𝑀𝑆𝐸 = 2.3332(±0.2338) is depicted in Fig. 5e.

Furthermore, the results in Figs. 5a–5d demonstrate that the brain signal resulting in Rabi antenna probes can be learned and 
predicted using a deep neural network (i.e. LSTM). This indicates that the deep neural network and the bio-neural network are 
comparable in many ways, based on these discoveries. Besides, this study is the first time a deep learning circuit is designed to 
predict the brain signal based on the Rabi antenna probes and there is no previous publication related to this finding to the best 
of our knowledge. For knowledge-sharing and repeatability/reproducibility purposes, our implementation of the method is publicly 
10

available at https://github .com /nhattruongpham /Deep _Brain _SigNet.

https://github.com/nhattruongpham/Deep_Brain_SigNet
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4. Conclusions

In this article, we have utilized CST and optiFDTD software tools to design and simulate the Rabi plasmonic antenna system. 
The proposed plasmonic antenna has a silver rod in the central ring. This antenna has a maximum gain of 22.4 dBi and a maximum 
directivity of 24.6 dBi. The sensitivity of the sensor is 1.6. Rabi vibration is confirmed by a two-level system. Electron spins and 
quantum sensors show that they are very useful and applicable to the human mind, thoughts, behavior and action/reaction sensors. 
In other words, our current work is an extensive simulation Study and corresponding disease prediction model on human brain 
through the integration of deep neural network and biosensor Rabi antenna targeted at the human mind, thoughts, behavior and 
actions that might be helpful to detect neuro-degenerative/psychological disorders and security purposes (criminal detection).

While the use of LSTM for time series modeling is fundamental, there are many advanced deep learning methods available. How-

ever, in our framework, our main focus is on an integrative approach using multidisciplinary methods such as deep neural networks 
and biosensor Rabi antennas, applied to the biomedical domain based on simulation and prediction. This integrative approach is rel-

atively new, and we are currently searching for stronger publicly available or newly generated related data to enhance our method 
and make it more realistic and efficient. Nonetheless, our proposed method can be scaled to design biosensor Rabi antenna devices 
that researchers can use in their experimental research for disease prediction and monitoring. Moreover, our proposed model can 
predict human minds, thoughts, behaviors, as well as actions and reactions, which can greatly aid in the diagnosis of various neurode-

generative and psychological diseases (such as Alzheimer’s and dementia) and to some extent, for security purposes. Nevertheless, 
further experimental validation using real-life public data is necessary to extend this approach.

Moreover, in practical applications, noises are inevitable in sensor data and can affect the results of the deep neural network 
prediction model. As a result, the sensor network data denoising method [34] should be considered and investigated in future work. 
Future work has the potential to develop Rabi chips to create humanoid robots. Stereo sensors and networks need to be incorporated 
into systems that enable a realistic humanoid experience. Sequential filtering processes can also produce smarter humanoids.
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