Universiti Teknologi Malaysia Institutional Repository

UTMInDualSymFi: A dual-band Wi-Fi dataset for fingerprinting positioning in symmetric indoor environments

Abdullah, Asim and Muhammad Haris, Muhammad Haris and Abdul Aziz, Omar and A. Rashid, Rozeha and Abdullah, Ahmad Shahidan (2023) UTMInDualSymFi: A dual-band Wi-Fi dataset for fingerprinting positioning in symmetric indoor environments. Data, 8 (1). pp. 1-38. ISSN 2306-5729

[img] PDF
3MB

Official URL: http://dx.doi.org/10.3390/data8010014

Abstract

Recent studies on indoor positioning using Wi-Fi fingerprinting are motivated by the ubiquity of Wi-Fi networks and their promising positioning accuracy. Machine learning algorithms are commonly leveraged in indoor positioning works. The performance of machine learning based solutions are dependent on the availability, volume, quality, and diversity of related data. Several public datasets have been published in order to foster advancements in Wi-Fi based fingerprinting indoor positioning solutions. These datasets, however, lack dual-band Wi-Fi data within symmetric indoor environments. To fill this gap, this research work presents the UTMInDualSymFi dataset, as a source of dual-band Wi-Fi data, acquired within multiple residential buildings with symmetric deployment of access points. UTMInDualSymFi comprises the recorded dual-band raw data, training and test datasets, radio maps and supporting metadata. Additionally, a statistical radio map construction algorithm is presented. Benchmark performance was evaluated by implementing a machine-learning-based positioning algorithm on the dataset. In general, higher accuracy was observed, on the 5 GHz data scenarios. This systematically collected dataset enables the development and validation of future comprehensive solutions, inclusive of novel preprocessing, radio map construction, and positioning algorithms. Dataset: https://doi.org/10.5281/zenodo.7260097 Dataset License: Creative Commons Attribution 4.0 International.

Item Type:Article
Uncontrolled Keywords:dual-band, fingerprinting, indoor positioning, raw data, symmetric environments, Wi-Fi dataset
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:106493
Deposited By: Widya Wahid
Deposited On:09 Jul 2024 06:14
Last Modified:09 Jul 2024 06:14

Repository Staff Only: item control page