Universiti Teknologi Malaysia Institutional Repository

Modeling the impact of phonon scattering with strain effects on the electrical properties of MoS2 field-effect transistors

Chin, Huei Chaeng and Hamzah, Afiq and Alias, Nurul Ezaila and Tan, Michael Loong Peng (2023) Modeling the impact of phonon scattering with strain effects on the electrical properties of MoS2 field-effect transistors. Micromachines, 14 (6). pp. 1-14. ISSN 2072-666X

[img] PDF
540kB

Official URL: http://dx.doi.org/10.3390/mi14061235

Abstract

Molybdenum disulfide (MoS2) has distinctive electronic and mechanical properties which make it a highly prospective material for use as a channel in upcoming nanoelectronic devices. An analytical modeling framework was used to investigate the I–V characteristics of field-effect transistors based on MoS2. The study begins by developing a ballistic current equation using a circuit model with two contacts. The transmission probability, which considers both the acoustic and optical mean free path, is then derived. Next, the effect of phonon scattering on the device was examined by including transmission probabilities into the ballistic current equation. According to the findings, the presence of phonon scattering caused a decrease of 43.7% in the ballistic current of the device at room temperature when L = 10 nm. The influence of phonon scattering became more prominent as the temperature increased. In addition, this study also considers the impact of strain on the device. It is reported that applying compressive strain could increase the phonon scattering current by 13.3% at L = 10 nm at room temperature, as evaluated in terms of the electrons’ effective masses. However, the phonon scattering current decreased by 13.3% under the same condition due to the existence of tensile strain. Moreover, incorporating a high-k dielectric to mitigate the impact of scattering resulted in an even greater improvement in device performance. Specifically, at L = 6 nm, the ballistic current was surpassed by 58.4%. Furthermore, the study achieved SS = 68.2 mV/dec using Al2O3 and an on–off ratio of 7.75 × 104 using HfO2. Finally, the analytical results were validated with previous works, showing comparable agreement with the existing literature.

Item Type:Article
Uncontrolled Keywords:acoustic, I–V, mean free path, MoS2 FET, optical, phonon, strain
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:105810
Deposited By: Yanti Mohd Shah
Deposited On:20 May 2024 06:34
Last Modified:20 May 2024 06:34

Repository Staff Only: item control page