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Abstract: Molybdenum disulfide (MoS2) has distinctive electronic and mechanical properties which
make it a highly prospective material for use as a channel in upcoming nanoelectronic devices.
An analytical modeling framework was used to investigate the I–V characteristics of field-effect
transistors based on MoS2. The study begins by developing a ballistic current equation using a circuit
model with two contacts. The transmission probability, which considers both the acoustic and optical
mean free path, is then derived. Next, the effect of phonon scattering on the device was examined by
including transmission probabilities into the ballistic current equation. According to the findings,
the presence of phonon scattering caused a decrease of 43.7% in the ballistic current of the device at
room temperature when L = 10 nm. The influence of phonon scattering became more prominent as
the temperature increased. In addition, this study also considers the impact of strain on the device. It
is reported that applying compressive strain could increase the phonon scattering current by 13.3% at
L = 10 nm at room temperature, as evaluated in terms of the electrons’ effective masses. However,
the phonon scattering current decreased by 13.3% under the same condition due to the existence of
tensile strain. Moreover, incorporating a high-k dielectric to mitigate the impact of scattering resulted
in an even greater improvement in device performance. Specifically, at L = 6 nm, the ballistic current
was surpassed by 58.4%. Furthermore, the study achieved SS = 68.2 mV/dec using Al2O3 and an
on–off ratio of 7.75 × 104 using HfO2. Finally, the analytical results were validated with previous
works, showing comparable agreement with the existing literature.

Keywords: MoS2 FET; phonon; acoustic; optical; mean free path; strain; I–V

1. Introduction

Silicon-based metal oxide semiconductor field-effect transistors (MOSFETs) have
been widely used in the last few decades. However, as the channel length has been
shrinking, short channel effects [1,2] have emerged and decreased the device’s precision.
Two-dimensional (2D) materials have emerged as promising candidates to tackle these
issues. In 2004, the discovery of graphene [3] drew the attention of researchers to study the
potential of 2D materials, such as boron phosphide [4], black phosphorus [5] and silicene [6],
for use as channels in devices. Molybdenum disulfide (MoS2) is also a member of the 2D
material family and is being considered as a future channel material to solve scaling issues.
The realization of the first semiconductor device based on an MoS2-based monolayer
took placed in 2005 [7]. MoS2 is already widely studied in applications, including image
sensors [8], solar cells [9], photosensitizers [10], optoelectronic memory devices [11] and
valleytronic devices [12].

Several studies have been conducted to explore the potential of using MoS2 as a
replacement for SiO2 as a channel material. Ahmed et al. [13] introduced a MoS2 FET
with both short and long channel lengths, demonstrating its comparability to traditional Si
transistors. Shunli et al. [14] designed a highly accurate SPICE model specifically tailored
for MoS2 FET. This model accounts for the non-idealities of the channel material and
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considers the impact of Schottky contact. In addition, Nandan et al. [15] proposed a double
gate MoS2 FET which considered the effect of channel thickness. Additionally, Khare
et al. [16] reported that the threshold voltage of MoS2 FET is influenced by the layer’s
thickness. Subsequently, Singh et al. [17] established a model for short channel TMD FET
that included the effect of source-to-drain tunneling. Moreover, Zeng et al. [18] proposed
a compact model for MoS2 FET that considers the effect of trap charges. Apart from this,
Ehsan et al. [19] created a 5 nm ballistic MoS2 FET SPICE model based on Natori’s theory
of ballistic MOSFET. Furthermore, Silvestri et al. [20] developed a hierarchical modeling
methodology specifically designed for a short channel ballistic model of TMD FET. Then,
Haixia et al. [21] demonstrated that MoS2 FET can achieve SS = 70 mv/dec. However, these
studies did not consider the effects of phonon scattering and strain in their models.

Various theoretical and experimental studies have investigated the effects of phonon
scattering and strain on MoS2 FET. Tiwari et al. [22] found that the impact of optical phonons
decreases as temperature increases, with a current variation of about 6.7% and between
300 K and 400 K. Pilotto et al. [23] demonstrated that optical phonons have a significant
effect on the current. In addition, Guo et al. [24] showed that scattering is significant at
higher temperatures. Meanwhile, strain has been shown to enhance the performance of
MoS2 FET. Khair et al. [25] suggested that optical phonons became dominant at higher
temperatures but can be suppressed by applying strain, which can increase the on-current
by about 15.56%. Next, Chai et al. [26] claimed that strain can raise the on current by
46%, indicating a positive effect on the device. Peto et al. [27] discovered that effective
mass decreases with increasing strain, enhancing the conductivity of MoS2. Subsequently,
Chen et al. [28] reported that tensile strain can increase carrier mobility by two orders of
magnitude and improve the performance of MoS2. Finally, Kaushal et al. [29] reported
similar results to [27] by showing the effect of tensile strain on the effective mass of different
MoS2 structures.

In this study, we present an analytical I–V model for MoS2 FET, which extends the
FETToy framework [30]. Specifically, we include the impact of phonon scattering and
strain in our model based on the findings of prior research [19]. Section 2 discusses the
formulation of the model, and the results are presented in Section 3. Finally, Section 4 has
our conclusions.

2. Device Modeling

The electrons located at the top of the barriers are filled either from the source or drain
regions. Electrons from the source region possess positive velocities, while electrons from
the drain region possesses negative velocities. Consequently, the electrons originating from
the source occupy the positive velocity states (+k), while those from the drain occupy the
negative velocity states (−k). The population of electrons in the +k state is determined
by the source Fermi level, EFS, whereas the population in the −k state is determined by
the drain Fermi level, EFD. Under equilibrium conditions, an equal number of electrons
occupy both states. The equilibrium electron density is achieved when the biases are set to
zero [31]:

N0 =
∫ +∞

−∞
D(E) f (E− EF)dE, (1)

where D(E) is the density of states of the channel and f (E− EF) is the equilibrium Fermi
function. Both the source and drain regions contribute equally to the available states, and
they populate their respective halves based on the Fermi level. However, when a drain
bias is applied, the states at the top of the barrier are now populated by two distinct Fermi
levels. Consequently, the electron density at the +k states and −k states is affected, which
is represented by [32]:

NS =
1
2

∫ +∞

−∞
D
(

E−Usc f

)
f (E− EFS)dE, (2)
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ND =
1
2

∫ +∞

−∞
D
(

E−Usc f

)
f (E− EFD)dE, (3)

where Usc f is the self-consistent potential, EFS = EF and EFD = EF − qVD. Due to the
decrease in the barrier height at the drain side by qVD, electrons begin to flow from the
source to the drain, as shown in Figure 1. Simultaneously, some low-energy electrons are
reflected back to the source and occupy the +k states again. In simpler terms, this implies
that there is a flow of current.
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Figure 1. A visual representation illustrating the process of filling electrons in the k states under
non-equilibrium conditions.

An analytical circuit model consisting of two contacts is depicted in Figure 2. The
source, located on the left, is always connected to the ground and has a Fermi level of EFS.
The right contact, or drain, has a Fermi level of EFD = EFS − qVD, where q is the electron
charge and VD is the drain voltage. The two Fermi levels are in the same equilibrium
condition but differ when a bias is applied. A gate, which is the third contact, is used to
alter the energy states of the device through Usc f [30,32].

Usc f = −
q

CΣ
[QT + q∆N], (4)

where CΣ = CG + CD + CS is the total capacitance, QT = CGVG + CDVD + CSVS is the
total charge at the terminals and ∆N is bias induced charge where ∆N = NS + ND − N0.
Re-expressing Equations (2) and (3),

NS =
1
2

∫ +∞

−∞
D(E) fS(E)dE, (5)

ND =
1
2

∫ +∞

−∞
D(E) fD(E)dE, (6)

where fS(E) ≡ f
(

E + Usc f − EFS

)
and fD(E) ≡ f

(
E + Usc f − EFD

)
. Meanwhile, D(E)

for MoS2 [33] is represented by the following equation:

D(E) =
gKm∗KkBT

π}2 +
gQm∗QkBT

π}2 exp−
∆EKQ

kBT , (7)

where gK = 2 and gQ = 6 are the degeneracy of the K and Q conduction valleys, respectively.
The terms m∗K = 0.48m0 and m∗Q = 0.57m0 are their respective density of state effective
masses [34]. The term ∆EKQ is the energy separation between K and Q conduction valleys,
which is around 2kBT for MoS2 [35]. Further valleys are not taken into account since they
are too far to contribute to electric conduction under normal bias conditions [36].
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Figure 2. Schematic diagram of ballistic nanotransistor circuit model.

By solving N and Usc f , the drain current, ID, is calculated using the Fermi–Dirac
statistic, and it is denoted as [37]:

ID =
q
2

vavg

∫ +∞

−∞
D(E)[ fS(E)− fD(E)]dE, (8)

where υavg =
√

2kBT
πm∗ is a thermal average velocity.

2.1. Phonon Mean Free Path

The transport of electrons is primarily determined by the channel length, L. In the
case where L is significantly larger than the mean free path (MFP), λ0, (L� λ0), electron
transport follows a drift-diffusive pattern with notable scattering effects. Conversely, when
L is approximately equal to λ0, (L ≈ λ0), electrons exhibit quasi-ballistic transport with
minimal scattering effects. Last, if L is scaled down to be much smaller than λ0, (L� λ0),
electrons undergo fully ballistic transport without encountering scattering effects [38].
Physically, λ0 represents the average distance that electrons travel before experiencing scat-
tering events or collision with other electrons, which can alter their direction of motion [39].
In short, a ballistic transistor is realized when L is comparable with λ0. However, 2D
material-based FETs generally have higher electron phonon scattering rates than their 3D
counterparts due to the higher density of phonons that can interact with the electrons [40].
This effect is also influenced by the strong interaction between the electrons in the conduc-
tion band and the holes in the valence band [41]. Two types of phonons are present, namely
acoustic and optical [42]. Consider a unit cell with two atoms of masses, M1 and M2 that
vibrate at their equilibrium positions: Acoustical vibration occurs when both atoms shift
either to the left or right. Meanwhile, optical vibration occurs when the two atoms move
away from each other in opposite directions [43].

2.2. Transmission Probability

The phonon scattering effects have hindered the realization of the perfect device.
Consider a device with L as depicted in Figure 3. At the starting point x = 0, only the
electrons coming from the source can enter the channel. As they travel some distance
(x < L), some of the electrons may lose energy, which is the energy of the optical phonon,
Eop, and is reflected back to the source. The existence of phonon scattering in a device is
characterized by the transmission probability, Tr.

Tr =
λ0

λ0 + L
. (9)
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When L � λ0, Tr is approaching 1 and vice versa, the impact of phonon scattering
is integrated into the device by adding Tr into (5). TS (TD) is the source side (drain side)
transmission probability, which is computed as follows [44]:

TS(E) =
Le f f (0)

Le f f (0) + L
, (10)

TD(E) =
Le f f (VDS)

Le f f (VDS) + L
. (11)

Le f f is computed as follows:

1
Le f f

=
1

Lac

(
1− 1

1 + exp(EF−Usc f +qVD)/kBT

)
+

1
Lop

(
1− 1

1 + exp(EF−Usc f−Eop+qVD)/kBT

)
. (12)

The values of Lac = 18.1 nm [45] and Eop = 0.048 eV [22] for MoS2; Lop is calculated as
follows [46]:

Lop =
rbε∞

ε0 − ε∞
, (13)

where rb = 0.053 nm is the effective Bohr radius, and ε∞ = 15.1 (ε0 = 15.3) is the optical
(static) dielectric constant [47] for MoS2. Thus, Lop = 4 nm.

Hence, (8) is redefined as follows:

ID =
q
2

vavg

∫ +∞

−∞
D(E)[TS(E) fS(E)− TD(E) fD(E)]dE. (14)

3. Results and Discussion

The parameter used to determine the extent of phonon scattering effects in the device
is referred to as ballisticity. It is calculated by taking the ratio of the phonon scattering
current to the ballistic current. The ballisticity is computed by setting the Lop value to
infinity in Equation (12) for the scenario of acoustic phonon scattering only. Similarly, for
the scenario of optical phonon scattering only, the ballisticity is determined by setting the
Lac value to infinity in Equation (12). Figure 4 illustrates the impact of acoustic and optical
phonon scattering on ballisticity. At low energy levels (EFS − Uscf < 0), acoustic phonon
scattering significantly affects the ballisticity, resulting in a value of only 0.644. Conversely,
the ballisticity associated with optical phonon scattering approaches that of a ballistic
device, reaching approximately one. This is attributed to the limited number of high-energy
electrons that can transverse the high barrier and reach the drain without backscattering to
the source, leading to a higher ballisticity. As the gate bias increases (EFS − Uscf > 0), the
influence of optical phonon scattering becomes more significant [48], and the ballisticity
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aligns with the trend of optical phonon scattering. At VG = 0.6 V, the impact of optical
phonon scattering surpasses that of acoustic phonon scattering, resulting in a sudden drop
in ballisticity. This phenomenon arises from the increased tendency of electrons to scatter
before reaching the drain, attributed to the shorter MFP of optical phonons. Moreover, the
lower potential barrier facilitates the electrons’ return to the source, ultimately resulting in
reduced ballisticity. It is important to note that while optical phonons attempt to maintain
ballisticity at low energy levels, the presence of acoustic phonons causes a sudden decline
in ballisticity at all energy levels.
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Figure 4. Ballisticity of MoS2 FET with L = 10 nm at VD = 0.5 V at T = 300 K.

Theoretically, electrons can acquire energy through both thermal and electrical means.
In Figure 5, MFP decreases as the energy increases, regardless of the temperature. At low
energy and low temperatures (200 K), Leff is predominantly influenced by Lac, indicating
that Lop does not play a significant role in determining Leff. This indicates that at 200 K,
electrons primarily interact with acoustic phonons since they have not yet acquired the
minimum energy, Eop, required for optical phonon scattering. Additionally, due to the
high potential barrier, most of the electrons are reflected back to the source. Therefore, Lac
dominates the determination of Leff. However, as the energy increases, Lop begins to surpass
the role of Lac. For E ≥ 0.03 V, Leff is determined by Lop, indicating that the electrons have
reached the Eop, and Lop takes over control of Leff. Furthermore, at E ≥ 0.05 V, Lop becomes
one order lower than Lac. Eventually, Leff reaches a constant value of 3.28 nm at E ≥ 0.15 V.
On the other hand, at 500 K, regardless of the energy levels, Lop directly controls Leff as the
electrons have thermally acquired sufficient energy to pass through the potential barrier.
Finally, Leff becomes constant at E ≥ 0.3 V, remaining at 3.28 nm.

The length scaling and applied voltage of this work were determined based on [37]. In
Figure 6a, it is evident that the ballistic current has been significantly reduced by phonon
scattering effects. It is observed that the current reduction is significant, with a 43.7%
reduction at L = 10 nm and 31.8% at L = 6 nm. It was also noted that the current at L = 6 nm
is 21.2% higher than that at L = 10 nm. As L approaches the phonon MFP, the percentage
of current reduction decreases. Moreover, Figure 6b shows that the current decreases by
40.9% at T = 200 K and 45.9% at T = 500 K. Furthermore, the current at T = 500 K is 76.4%
higher than the current at T = 200 K. As the temperature increases, the percentage of current
drop has increased due to the phonon scattering governing at higher temperatures [49]
and more electrons gaining adequate energy to undergo phonon scattering and scatter
electrons even further [50]. In addition, the electrons experience more rigorous thermal
vibration at a higher temperature, resulting in greater phonon scattering [51]. Furthermore,
ref. [50] suggested that the scattering effects under elevated temperatures, which have a
detrimental effect on device performance, are primarily dominated by optical phonons.
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Figure 5. MFP of MoS2 at (a) T = 200 K (b) T = 500 K.
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(b) L = 10 nm at T = 200 K and T = 500 K: phonon scattering current, Iph, and ballistic current, IB.

As mentioned in [52], modifications in bond angle and bond length due to strain alter
the effective masses of electrons, leading to energy separation in the K and Q valleys. Hence,
this study adapts the effective mass at a different applied strain, ε, from [53]. A comparison
of Figures 6a and 7a reveals some notable distinctions. It is observed that a compressive
strain of ε =−5% can offset the negative effects of phonon scattering, leading to a 13.3% and
11.6% amplification of the current at L = 10 nm and L = 6 nm, respectively. Moreover, the
current under compressive strain at L = 6 nm is increased by 19.3% from that at L = 10 nm.
Furthermore, Figure 7b revealed that the current is boosted by 8.34% at T = 200 K and 18.4% at
T = 500 K, with the current under compressive strain at T = 500 K elevated by 92.7% compared
to that at T = 200 K. In contrast, a tensile strain of ε = 5% cannot compensate for the impact of
phonon scattering, leading to an 18.6% and 16.1% attenuation of the current at L = 10 nm and
L = 6 nm, respectively. However, at L = 6 nm, the current under tensile strain is increased by
24.8% when compared to that at L = 10 nm. Furthermore, Figure 7b indicates that the current
experienced a reduction of 13.5% under tensile strain at T = 200 K and a decrease of 22.6%
at T = 500 K, with the current at T = 500 K enhanced by 57.9% relative to that at T = 200 K.
According to [54], the reduction in the bandgap of MoS2 contributes to the enhancement of
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the current. Compressive strain resulted in a narrower bandgap compared to tensile strain.
However, the current achieved under compressive strain is still significantly lower than the
ballistic current.
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Figure 7. I–V characteristic of MoS2 FET under compressive strain, ε = −5%, tensile strain, ε = 5%
and VG = 0.5 V with (a) L = 10 nm and L = 6 nm at T = 300 K (b) L = 10 nm at T = 200 K and T = 500 K:
strain current, Iphs.

Al2O3 is a gate dielectric commonly used in MoS2 FET [55,56] because it has the ability
to weaken scattering effects [57]. When compressive strain and k = 9 [58] are applied, the
current increases significantly, even more than the ballistic current depicted in Figure 6a,
with increments of 29.2% and 58.4% at L = 10 nm and L = 6 nm, respectively. In addition,
Figure 8a presents an increase in current of 102.5% at L = 10 nm and 108.1% at L = 6 nm,
with a 22.6% increase at L = 6 nm from L = 10 nm. Figure 8b shows that the current increases
by 117.7% at T = 200 K and by 89.0% at T = 500 K, with an increase of 67.3% at T = 500 K
from T = 200 K.
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Figure 8. I–V characteristic of MoS2 FET at ε = −5%, k = 9 and VG = 0.5 V with (a) L = 10 nm and
L = 6 nm at T = 300 K (b) L = 10 nm at T = 200 K and T = 500 K: high-k compressive strain current,
Iphs-5k9.

According to Figure 9a, the current is improved by tensile strain but is still lower than
the ballistic current. Specifically, the current is increased by 67.7% and 77.5% at L = 10 nm
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and at L = 6 nm, respectively, and there is also an increase of 32.1% from L = 10 nm to
L = 6 nm. Next, Figure 9b depicted that the current is elevated by 70.9% at T = 200 K and
61.8% at T = 500 K. Moreover, the current is enhanced by 49.5% from T = 200 K to T = 500 K.
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Figure 9. I–V characteristic of MoS2 FET at ε = 5%, k = 9 and VG = 0.5 V with (a) L = 10 nm and L = 6 nm
at T = 300 K (b) L = 10 nm at T = 200 K and T = 500 K: high-k tensile strain current, Iphs5k9.

Figure 10 illustrates that SS remains consistent across the different gate dielectrics
and on–off ratios at different gate dielectrics: SiO2 (k = 3.9) [59], Al2O3 (k = 9) and HfO2
(k = 25) [60]. At L = 10 nm, the values of SS at SiO2, Al2O3 and HfO2 are 69.0 mV/dec,
68.2 mV/dec and 69.6 mV/dec, respectively, while the on–off ratio at SiO2, Al2O3 and
HfO2 are 2.16 × 104, 3.93 × 104 and 7.40 × 104. At L = 6 nm, the values of SS at SiO2, Al2O3
and HfO2 are 68.9 mV/dec, 68.0 mV/dec and 68.8 mV/dec, respectively, while the on–off
ratio at SiO2, Al2O3 and HfO2 are 2.18 × 104, 4.02 × 104 and 7.75 × 104, respectively. It
is noteworthy that the SS remains relatively constant regardless of the type of dielectric
employed. Conversely, the on–off ratio demonstrates an increasing trend with high-k
dielectrics. This can be attributed to the shifting of the valence and conduction bands [61]
and the enhancement of the fringing electric field within the device. These factors contribute
to a higher on current and a lower off current, ultimately resulting in an improved on–off
ratio [62]. Therefore, the utilization of high-k dielectrics is preferable in devices with shorter
channel lengths because it increases the off current caused by the reduced distance between
the source and drain, thereby enhancing the punch-through effect [63]. However, it is
important to avoid high-k dielectric with excessively large values (k > 25) as they can
lead to a stronger fringing electric field, thereby compromising gate control and failing to
effectively suppress short channel effects [64]. In fact, the deposition of high-k dielectrics on
MoS2 increases both the on and off currents due to the oxide vacancies in the materials. NH3
plasma treatment on high-k dielectrics can repair the vacancy defects and thus enhance the
device performance [65,66].

The accuracy of our model is benchmarked against the published models and experi-
mental data. Figure 11 depicts the comparison of our study and [19]; our model showed
fairly good agreement with the published model despite the use of different approaches.
Our model was assessed using experimental data [67,68], which showed similar values
of SS and on–off ratio values. It is noted that SS of the device using SiO2 is considerably
higher than the device utilizing high-k dielectrics. It is worth mentioning that decreasing
the oxide thickness to a few nanometers can lead to a reduction in SS [69]. The physical
dimensions and performance metrics of our model and published studies were tabulated
in Table 1.
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Figure 10. SS and on–off ratio of MoS2 FET at ε = −5% and L = 10 nm at T = 300 K.
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Table 1. Physical dimensions and performance metrics in our study and published studies.

Dual-Gate Device Single-Gate Device Single-Gate Device

Parameters Our Study Other Model [19] Our Study Experimental
Data [67] Our Study Experimental

Data [68]

Channel length, L 5 nm 5 nm 16 µm 16 µm 20 µm 20 µm

Temperature, T (K) 300 300 300 300 300 300

Dielectric constant, k 16 16 25 25 3.9 3.9

Oxide thickness, Tox
(nm) 2 2 10 10 90 90

SS (mV/dec) 153.5 157.0 76.4 77.6 359 360

On–off ratio 103 103 104 104 105 105

The performance of our model was also compared with that of a different 2D FET ma-
terial from our previous studies, specifically a silicene nanoribbon field-effect transistor [37]
which revealed comparable SS and on–off ratio values. While [37] showed SS and an on–off
ratio of 67.9 mV/dec and 104, our model exhibited SS and an on–off ratio of 68.3 mV/dec
and 104, respectively. These indicated that our model could serve as a guideline to realize
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the MoS2 FET. Furthermore, this comparison allowed us to evaluate the effectiveness and
applicability of our model across various materials and device architectures, demonstrating
its potential for broader application in the field of 2D FETs.

4. Conclusions

In conclusion, the phonon scattering and strain effects on MoS2 FET are investigated.
The influence of phonon scattering on currents is reduced as the device’s channel length
approaches the phonon MFP, but it increases at higher temperatures. Overall, phonon
scattering reduces the ballistic current by more than 40% at different temperatures. At
low energy levels (EFS < Uscf), acoustic phonon scattering is more prominent, while optical
phonon scattering becomes dominant as energy levels increase. At higher temperatures
(500 K), the influence of optical phonon scattering exceeds that of acoustic phonon scattering.
On the other hand, applying compressive strain increases the current by 13.3%, while
tensile strain is reduced by 18.6% when compared to the phonon scattering current. The
use of a high-k dielectric can enhance the current, even surpassing the ballistic current
under compressive strain and in shorter channel length devices under tensile strain. The
accuracy of the model was assessed and found to be in good agreement with published
studies. Devices utilizing high-k dielectrics exhibit an improvement in SS. Nonetheless,
caution should be exercised in choosing dielectrics with excessively high k values, as
they may counteract the advantages offered by high-k materials. In summary, this study
provides valuable insights into the influence of acoustic and optical phonons under various
conditions, affecting the ballisticity of the device. Additionally, the introduction of strain
has the potential to improve device performance. Moreover, high-k dielectrics can be
employed to enhance the overall performance of the device. This study could be expanded
by including other non-ballistic effects, such as interface trap charges, contact resistance
and leakage currents. Furthermore, this modeling approach can be extended for utilization
with other 2D materials.
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Appendix A

NS/D =
1
A ∑

kx>0, ky

f (E− EFS/D),

=
x

kx>0, ky

2
d2k

(2π)2 f (E− EFS/D),



Micromachines 2023, 14, 1235 12 of 14

=
∫ +∞

−∞
dE f (E− EFS/D)

1
2

∫
S(E)

dS
2π2

1
|∇E(k)| .

S(E), dS, dE/|∇E(k)| are the constant energy surface in k-space, the elemental area on this
surface and the distance between the surface S(E + dE) and S(E). Defining the DOS as

D
(

E−Usc f

)
=
∫

S(E−Usc f )

dS
2π2

1
|∇E(k)| ,

NS/D =
1
2

∫ +∞

−∞
D
(

E−Usc f

)
f (E− EFS/D)dE.

Redefining the expression above,

NS/D =
1
2

∫ +∞

−∞
D(E) f

(
E− EFS/D + Usc f

)
dE,

=
1
2

∫ +∞

−∞
D(E) fS/D(E)dE.

which is equivalent to Equation (5) or (6).
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