Seghier, Taki Eddine and Lim, Yaik-Wah and Harun, Muhamad Farhin and Ahmad, Mohd. Hamdan and A. Samah, Azurah and Abdul Majid, Hairudin (2022) BIM-based retrofit method (RBIM) for building envelope thermal performance optimization. Energy and Buildings, 256 (NA). pp. 1-20. ISSN 0378-7788
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.enbuild.2021.111693
Abstract
Retrofitting building envelope thermal performance is crucial to ensure adequate interior thermal comfort of the building, minimize cooling load rate and, therefore, reduce overall building energy consumption. The retrofit process of an existing building envelope involves the design team selecting the best performing building materials and components based on various design variables and predefined design objectives. Worldwide, an overall thermal transfer value (OTTV) metric has been developed and used for assessing heat transfer through the building envelope. However, the application of OTTV implicates dealing with many design variables and much information, which makes the design decision-making process time-consuming and complicated. Furthermore, selecting the most appropriate design alternative in terms of OTTV performance while considering the most cost-effective design option could be a very challenging task. Therefore, this research proposes a method for retrofitting building information modelling (RBIM) to achieve a tradeoff design set between two conflicting objectives, namely minimizing OTTV and minimizing the retrofit cost. The prototype system derived from this method integrates BIM authoring tools (e.g., Autodesk Revit®), visual scripting (e.g., Dynamo), and a non-dominated sorting genetic algorithm (NSGA-II) customized in MATLAB®. The applicability of the proposed system is validated with a case study of an office building. The results show that the developed system provides a valuable design decision support system for retrofitting building envelope thermal performance while considering the retrofit cost. Additionally, the system shows an improved level of automation in terms of data management compared to the conventional methods.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Building information modelling, Existing building, Green retrofitting, Multi-objective optimization algorithm, Overall thermal transfer value, Visual programming |
Subjects: | T Technology > TH Building construction |
Divisions: | Built Environment |
ID Code: | 103630 |
Deposited By: | Widya Wahid |
Deposited On: | 20 Nov 2023 03:30 |
Last Modified: | 20 Nov 2023 03:30 |
Repository Staff Only: item control page