Universiti Teknologi Malaysia Institutional Repository

Fresnel lens defect classification using deep learning technique

Loo, Kean Li and Chong, Keat Saw and Ibrahim, M. H. (2022) Fresnel lens defect classification using deep learning technique. In: 8th International Conference on Computational Science and Technology, ICCST 2021, 28 - 29 August 2021, Virtual, Online.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/978-981-16-8515-6_42

Abstract

Plastic injection molded Fresnel lens is one of the important components for illumination in smart devices. To perform inspection on this type of optical component is challenging for machine vision due to the presence of groove pattern and texture. This paper discusses the limitation of classical image analysis for defect inspection and proposes a Deep Convolutional Neural Network (CNN) with Transfer Learning for defect classification. This paper also presents a Hybrid CycleGAN and geometric augmentation to expand image dataset for model training.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:Deep learning, Defect classification, Fresnel lens, Image augmentation, Image generation
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:99420
Deposited By: Widya Wahid
Deposited On:27 Feb 2023 04:02
Last Modified:27 Feb 2023 04:02

Repository Staff Only: item control page