Universiti Teknologi Malaysia Institutional Repository

Defect severity classification of complex composites using CWT and CNN

Lim, Wilson and Mohd. Khairuddin, Anis Salwa and Khairuddin, Uswah and Murat, Bibi Intan Suraya (2022) Defect severity classification of complex composites using CWT and CNN. In: International Conference on Computational Intelligence in Machine Learning, ICCIML 2021, 1 June 2021 - 2 June 2021, Virtual, Online.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/978-981-16-8484-5_14

Abstract

Composite structures are prone to internal defects such as delamination. Due to this, it is vital to recognize internal flaws in composite materials accurately because there is possibility that these internal defects can severely degrade the composite structure’s strength. This work aims to develop an intelligent complex composite defect severity classification which will contribute to efficient monitoring of composite structures during their service life. Firstly, the behavior of guided ultrasonic waves is processed and transformed into image database using continuous wavelet transform method. Then, a defect classification framework is proposed by using convolutional neural network to classify six types of defect sizes. A total of 798, 342, and 90 images are used for training, validation, and testing, respectively. The results present that the proposed system achieved approximately above 86% of precision and recall for all six defects classes.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:deep learning, machine learning, signal classification, wavelet transform
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Malaysia-Japan International Institute of Technology
ID Code:98985
Deposited By: Yanti Mohd Shah
Deposited On:22 Feb 2023 03:11
Last Modified:22 Feb 2023 03:11

Repository Staff Only: item control page