Universiti Teknologi Malaysia Institutional Repository

Performance enhancement of SCM/WDM-RoF-XGPON system for bidirectional transmission with square root module

Hamza, Bashar J. and Saad, Wasan Kadhim and Shayea, Ibraheem and Ahmad, Norulhusna and Mohamed, Norliza and Nandi, Dalia and Gholampour, Golshan (2021) Performance enhancement of SCM/WDM-RoF-XGPON system for bidirectional transmission with square root module. IEEE Access, 9 . pp. 49487-49503. ISSN 2169-3536

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/ACCESS.2021.3065285


The 10-Gigabit Passive Optical Network (GPON), also known as (XGPON), is a key technology for the next generation of optical fibre communication systems that can improve reliability data rate. However, the increment in the transmission distance and data rate will lead to increased dispersion. This paper proposes a model based on the Sub-Carrier Multiplexing/Wavelength Division Multiplexing-Radio over Fibre-10-Gigabit Passive Optical Network system (SCM/WDM-RoF-XGPON) for Radio Frequency (RF) using a conventional Optical Network Unit (ONU) with the Square Root Module (SRM) on the side of the receiver. It is connected to a central office Optical Line Terminal (OLT) via an access network for multi-channel optical fibre transfers with a distance of 80 km and at 10 Gbps data rate. The Optisystem 15 simulation software is used to evaluate the proposed system based on the Bit Error Rate (BER), Quality factor (Q-factor) and eye diagram. The proposed system of bidirectional fibre links uses 1270 nm and 1577 nm wavelengths for uplink and downlink transmissions, respectively. The performance is further enhanced by using SRM to compensate for the square law characteristics, making it suitable for broadband services. Due to the utilisation of SRM in the architecture, the reported results reveal a double enhancement in successful transition performance at an optical fibre length of 80 km distance. The BER displayed significant improvement (less than 1.00E-09) with SRM at 80 km; however, without SRM and at 50 km, the BER is less than 1.00E-09. Investigations have presented an enhancement in the Q-factor’s effectiveness with the use of SRM, which helps to increase the XGPON length. When the length of the fibre is 80 km, the Q-factor is 6 with SRM, while it is 3.7 without SRM.

Item Type:Article
Uncontrolled Keywords:10-Gigabit passive optical network (XGPON), Optical line terminal (OLT)
Subjects:T Technology > T Technology (General)
Divisions:Razak School of Engineering and Advanced Technology
ID Code:95074
Deposited By: Widya Wahid
Deposited On:30 Apr 2022 06:23
Last Modified:30 Apr 2022 06:23

Repository Staff Only: item control page