EFFECT OF ACCELEROMETER MASS ON THIN PLATE VIBRATION

NOR HATINI BINTI BAHARIN

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Mechanical)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

DECEMBER 2008
ACCELEROMETER is widely used as a vibration measurement transducer. The disadvantage of contact type accelerometer is its mass can cause the natural frequencies of the structure to change from their correct values. Generally this effect is ignored in the experimental studies based on the assumption that the accelerometer mass is negligible compared to the mass of the test structure. However when lightweight structure is tested, this effect is significant. The purpose of this study is to investigate the effect of accelerometer mass on thin plate vibration. The natural frequency and its corresponding mode shape were the parameters of interest. Two thin plates of different thickness and various boundary conditions were investigated by using experimental modal analysis and finite element analysis. The accelerometer mass was added and mounted at three different locations. Results show that the thinner the plate, the more sensitive it is to the mass loading effect. The accelerometer mass shows significant effect on some of the modes of the structure while other modes remain unchanged. The accelerometer mounted at a point of peak deflection of the plate showed large changes of natural frequencies and its corresponding mode shapes. There are no significant changes of natural frequency and mode shapes for accelerometer attached at nodal line of the particular mode. It is concluded that, the effect of accelerometer mass depends on the location of the accelerometer, vibration mode, magnitude of accelerometer mass and test structure.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction | 1
1.2 Objectives of the study | 3
1.3 Scope of the study | 3
1.4 Outlines of the Thesis | 4

2 LITERATURE REVIEW

2.1 Transducer Mass loading | 5
2.2 Concentrated and Distributed Mass Loading | 9
2.3 Conclusion Remark | 10
3 THEORETICAL BACKGROUND
3.1 Theory of Mass Loading 11
3.2 Plates 13
3.3 General Behaviour of Plates 15
3.4 Natural Frequencies of Rectangular Plates 16
3.5 Modal Analysis 17
3.6 Experimental Modal Analysis 18
 3.6.1 Theory of Modal Analysis 19
 3.6.2 Frequency Response Function 20
 3.6.3 Experimental Set Up and Experiment 21
 3.6.3.1 Transducer 22
 3.6.3.2 Exciter 26
 3.6.4 Data Acquisition and Signal Processing 29
 3.6.5 System Identification 30
3.7 Finite Element Analysis 31
 3.7.1 General Procedure for finite element analysis 31
 3.7.2 Selecting The Eigenvalue Extraction Method 35
3.8 Pretest Analysis 36
3.9 Validation and Correlation 37

4 METHODOLOGY 39
4.1 Project Methodology 39
4.2 Operational Framework 40
4.3 Test Structure 41
4.4 Experimental Modal Analysis 42
 4.4.1 The Equipment In Experimental Modal Analysis 42
 4.4.2 Preparation of Test Structure 46
 4.4.3 Experimental Set up 47
4.4.4 Experimental Procedure for Modal Testing Using Impact Hammer

4.4.5 Modal analysis using MEâcope Software

4.5 Finite Element

4.5.1 Convergence Test

4.6 Concluding Remark

5 RESULTS AND DISCUSSION

5.1 Boundary Condition : Free Edges

5.1.1 Plate A (thickness 4mm)

5.1.2 Plate B (thickness 3mm)

5.2 Boundary Condition : One Edge Clamped

5.2.1 Plate A (thickness 4mm)

5.2.2 Plate B (thickness 3mm)

5.3 Boundary Condition : Two Adjacent Edges Clamped and Free

5.3.1 Plate A (thickness 4mm)

5.3.2 Plate B (thickness 3mm)

5.4 Boundary Condition: Two Opposite Edges Clamped

5.4.1 Plate A (thickness 4mm)

5.4.2 Plate B (thickness 3mm)

5.5 Summary of the Results

5.6 Conclusion Remark

6 ANALYSIS OF THE DATA

6.1 Natural Frequencies of the Plate Without Additional Mass

6.2 Varying Accelerometer Mass with Accelerometer Fixed at Location
6.3 Varying Accelerometer Location and Accelerometer Mass Constant.

6.3.1 Case 1: Plate A with FFFF boundary condition.

6.3.2 Case 2: Plate B with FFFF boundary condition.

6.3.3 Case 3: Plate B with CFFF boundary condition.

6.4 Varying Thickness of the Plate with Constant Accelerometer Mass.

6.5 Concluding Remark

7 CONCLUSION AND RECOMMENDATION

REFERENCES
1.1 Introduction

Accelerometers are transducer that measures the acceleration of a vibrating body. It is widely used for vibration measurement because of its small size, high sensitivity and large usable frequency range. In most cases, the systems that undergo experimental measurement are affected by transducer. This is true, especially if the testing structure is a small and lightweight. Then, the effect of accelerometer mass becomes significant when measuring lightweight structure.

Lightweight structures are those structures that optimize the load carrying capacity of the elements by large deflection, allowing the load to be taken primarily in tension. It is characterized by having small mass relative to the applied load which is determines through an optimization process. Lightweight structures include cable, membrane, shell, thin plate and folded structures as well as space grids, domes and trusses system.
Since, the accelerometer is the contacting transducer types, it must be rigidly attached to the structure. The coupling between the accelerometer and the original system will create a new system and lead a certain changes in its dynamic response.

Theoretically, the natural frequency is related to the square root of the ratio of stiffness to mass. Thus, if the mass of the accelerometer is added to the structure to make a measurement, it will lower the natural frequency which is illustrated in Figure 1.1. From the figure, it shows the heavier accelerometer which is in red line has a natural frequency shifted to the left, which indicates a lowered natural frequency compared with the lightweight accelerometer mass. As the frequencies are increased, the effect can be seen obviously.

![Figure 1.1: Frequency response function with two different mass of accelerometer](image)

Thus, this project studied the effect of accelerometer mass on thin plate vibration. Thin plates are one of the lightweight structures and commonly used as structural components in many branches of modern technology namely mechanical, aerospace, electronic, optical, marine and structural engineering.
1.2 Objectives Of The Study

The aim of this study is to investigate the effect of accelerometer mass on thin plate vibration. The natural frequencies and the corresponding mode shapes of the plate are the parameters of interest.

1.3 Scope Of The Study

The scopes for this study include:

i. Determine the first sixth of natural frequencies and mode shapes by experimental and numerical analysis.

ii. Only rectangular thin plate is considered.

iii. Apply various boundary conditions on plate.
1.4 Outlines Of The Thesis

This thesis is composed of seven chapters which are as follows:

In chapter 1, general review of this study is discussed. The literature review about transducer mass loading and concentrated mass is presented in chapter 2.

Chapter 3 introduces the theoretical background about the concepts of transducer mass loading, theory of thin plate, modal analysis and finite element analysis. The understanding of the theoretical background is important to make this study achieves its objective.

Chapter 4 gives a brief explanation about the methodology used in this study. The experimental modal analysis was done by using impact hammer. The natural frequency and its associate mode shape was extracted by using modal analysis software namely MEcope VES Version 4.0. While, for finite element analysis it was done by using ABAQUS software.

The results of first sixth natural frequency and mode shape of the test plates with various boundary conditions obtained through the experimental and finite element analysis were tabulated in the table in chapter 5.

Chapter 6 presents the analysis of data to look at the effect of accelerometer mass, location of accelerometer and thickness of the plates on the natural frequency and mode shape.

In chapter 7 the presented study is summarized. Recommendation for further research in this area are also included.
The objective of this study is to investigate the effect of accelerometer mass on thin plate vibration, where the natural frequencies and its corresponding mode shapes become the parameters of interest. Two different plate thickness were examined which are plate A (4mm thickness) and plate B (3mm thickness) with various boundary condition.

The results demonstrated that an accelerometer mass affect some of the modes of a structure while other modes remain unchanged. Accelerometer attached near the anti node has larger changes in natural frequency. Thus, the mode shapes for that particular mode also show significant changes. However for accelerometer attached near a nodal line of a particular mode of the structure, numerical results showed that the natural frequencies of the mode remains unchanged. As a result, no significant changes of mode shape at this particular mode.

Based on the literature review, it was noted that accelerometer mass should not be more than 1/10 of the mass of the structure [14]. This study showed that this rule may not be reliable for the certain vibration mode. The vibration mode that effect by mass loading must be corrected by using correction method presented in
reference [5]. Thus, the lightest accelerometer mass as possible has to be used to decrease the mass loading effect.

The results also demonstrated that thinner plates are more sensitive to the mass loading effect. The effect can be avoided or minimized by using the lightest accelerometer as possible or using non contact transducer.

As mention earlier in the introduction, this study look at the effect of accelerometer mass, effect of the location of accelerometer and effect of light sample on the natural frequency and mode shape at various boundary condition. Two adjacent edges clamped and free (CCFF) boundary condition gave higher changed in fundamental natural frequency compared to free edges (FFFF) with the same added mass. This is possibly due to the mass are more dominant than stiffness as added mass increased for CCFF boundary condition. It can be concluded that the effect of accelerometer mass depends on the location of the accelerometer, vibration mode and the structure. The studies on the effect of the accelerometer mass on the dynamic properties of the structures indicate that both natural frequency and mode shapes should be considered.

To improve this study in future it is recommended to use a non contact transducer to measure the response. Either than that, the shaker also can be used instead of hammer to provide constant force for vibration excitation. It is also recommended to study the effect of the accelerometer mass on damping by using the non-contact transducer. However the study should only considered the free boundary condition. This is due to damping also exist at clamped support thus will produce inconsistency in data if clamped boundary condition is used.
REFERENCES

7. Bregant, L et al. Non contact Sensors Comparison For Dynamic Testing Of Lightweight Structures; Proceedings Of Isma 2006; 1861-1869

