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ABSTRACT 

The destructive effect of microbiologically influenced corrosion (MIC) of 

carbon steel in pipelines has been widely found in soil and water environments. 

Chemical biocides are normally used for MIC mitigation in pipelines. However, 

many problems were encountered in its application, causing biocides usage to remain 

controversial. Ultraviolet (UV) radiation is seen as a possible alternative for chemical 

biocides. Nevertheless, information on the efficiency of UV treatment and the 

influences of UV parameters on corrosion process is limited, thus restricting any 

efforts to explore the potential application of UV as a chemical biocide replacement. 

This study aims to identify the effectiveness of UV disinfection against MIC caused 

by Sulfate Reducing Bacteria (SRB) strain. The investigation utilized two different 

samples of SRB sources: Baram-C and ATCC7757 strains. The Baram-C SRB 

consortium sample was cultivated from raw crude oil gathered from one of the main 

trunk lines at Baram Delta Operation, Sarawak, Malaysia, while the ATCC7757 SRB 

sample was sourced from the American Type Culture Collection (ATCC). The 

observation on bacteria growth revealed that the preferred pH and temperature for 

the active cultivation of Baram-C and ATCC7757 strains were pH 8.5 and 37˚C, 

respectively inside the Modified Baar’s media. The corrosion process was found 

more severe in biotic condition by approximately 50% based on metal loss results. 

The maximum corrosion rate in biotic environment was recorded at 0.3209 mm/year 

and 0.5042 mm/year for Baram-C and ATCC7757 strains, respectively, as compared 

to the 0.1791 mm/year corrosion rate in an abiotic sample. One-Factor-At-a-Time 

(OFAT) analysis was performed under the influence of UV time of exposure, types 

of UV lamps, numbers of UV lamps and treated volume. The optical density reading 

showed that UV treatment was able to suppress the number of bacteria up to almost 

99% after 28 days of incubation. The effect on bacteria growth was similar for both 

strains. However, when a variety of UV treatment parameters were applied, different 

bacterial strains indicated different rates of metal loss. Furthermore, Response 

Surface Methodology (RSM) was used as a tool to determine the relationship 

between UV parameter and metal loss by using two different types of UV lamps (10 

watts and 14 watts). The RSM models were successfully developed with R
2
 of 

0.8990 and 0.9020 for UV lamps with 10 watts and 14 watts, respectively. ANOVA 

results indicate that the effects of treated volume do not depend on the level of 

factors contact time and numbers of UV lamp for 10 watts lamps, whereas for 14 

watts lamps, the contact time and number of UV lamp do affect each other. The 

result also suggests that the effectiveness of UV treatment does not only depend on 

UV lamp’s intensity to provide optimum curing. The experimental test and numerical 

analysis performed in this research has provided a comprehensive understanding of 

the efficiency of UV treatment on the extermination of SRB strains and reduction of 

metal loss rates. The findings also produced a numerical measurement of metal loss 

rate due to SRB as a function of UV radiation. This can serve as an impetus for the 

transition of UV technology from its infancy level to the real-world practice of 

corrosion mitigation in the oil and gas industry.  
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ABSTRAK 

 Kesan pemusnahan mikrobiologi yang mempengaruhi kakisan (MIC) keluli 

karbon dalam saluran paip telah banyak ditemui didalam persekitaran tanah dan air. 

Biosid bertoksik biasanya digunakan untuk mengatasi masalah MIC dalam saluran 

paip. Walau bagaimanapun, pengunaan biosid mempunyai banyak masalah 

menyebabkan penggunaannya masih dipersoal. Radiasi Ultralembayung (UV) dilihat 

sebagai alternatif untuk menggantikan pengunaan biosid. Walau bagaimanapun, 

maklumat mengenai kecekapan rawatan UV dan pengaruh parameter UV pada 

proses kakisan adalah terhad, sekali gus menyekat sebarang usaha untuk meneroka 

penggunaannya sebagai pengganti biosid. Kajian ini bertujuan untuk mengenalpasti 

keberkesanan pembasmian kuman UV terhadap MIC yang disebabkan oleh Bakteria 

Pengurangan Sulfat (SRB). Siasatan menggunakan dua contoh sumber SRB yang 

berbeza: jenis Baram-C dan ATCC7757. Sampel konsortium SRB Baram-C diambil 

dari minyak mentah yang dikumpulkan dari salah satu garisan paip utama di Baram 

Delta Operation, Sarawak, Malaysia, manakala sampel ATCC7757 SRB diperoleh 

dari Koleksi Kultur Jenis Amerika (ATCC). Pemerhatian terhadap pertumbuhan 

bakteria menunjukkan bahawa pH dan suhu pilihan untuk Baram-C dan ATCC7757 

untuk aktif membiak adalah pada pH 8.5 dan 37˚C, masing-masing di dalam media 

Modified Baar. Proses karat didapati lebih teruk dalam keadaan biotik dengan kira-

kira 50% berdasarkan hasil kehilangan logam. Kadar kakisan maksimum dalam 

persekitaran biotik dicatat pada 0.3209 mm/tahun dan 0.5042 mm/tahun bagi jenis 

Baram-C dan ATCC7757, berbanding dengan kadar kakisan 0.1791 mm/tahun dalam 

sampel abiotik. Analisis Satu-Faktor-Pada-Satu-Masa (OFAT) dilakukan di bawah 

pengaruh masa pendedahan, jenis lampu UV, bilangan lampu UV dan isipadu sampel 

yg dirawat. Hasil dari data kepadatan optik menunjukkan bahawa rawatan UV 

mampu mengurangkan jumlah bakteria pada hampir 99% setelah 28 hari diinkubasi. 

Kesan pertumbuhan bakteria adalah serupa untuk kedua-dua jenis. Walau 

bagaimanapun, apabila pelbagai parameter rawatan UV digunakan, jenis bakteria 

yang berbeza telah menunjukkan kadar kehilangan logam yang berlainan. Selain itu, 

Kaedah Tindakbalas Permukaan (RSM) digunakan sebagai alat untuk menentukan 

hubungan antara parameter UV dan kehilangan logam dengan menggunakan dua 

lampu UV berlainan kuasa (10 watts dan 14 watts). Model RSM berjaya 

dibangunkan dengan nilai R
2
 0.8990 dan 0.9020 untuk lampu UV dengan kuasa 10 

watts dan 14 watts. Dari analisis ANOVA, dapat diperhatikan bahawa kesan bagi 

isipadu sampel dirawat tidak bergantung pada faktor masa pendedahan dan keamatan 

UV untuk lampu berkuasa 10 watts, namun begitu pada lampu 14 watts, faktor masa 

pendedahan dan jumlah lampu adalah berkaitan antara satu sama lain. Hasilnya juga 

menunjukkan bahawa keberkesanan rawatan UV tidak banyak bergantung pada nilai 

keamatan lampu UV. Ujian eksperimen dan analisis berangka yang dilakukan dalam 

kajian ini telah memberikan pemahaman yang komprehensif tentang kecekapan 

rawatan UV pada pemusnahan jenis SRB dan pengurangan kadar kehilangan logam. 

Penemuan ini juga menghasilkan pengukuran berangka kadar kehilangan logam 

disebabkan oleh SRB sebagai fungsi sinaran UV. Ini boleh bertindak sebagai 

dorongan untuk mentransisi teknologi UV dari tahap awal kepada amalan di dunia 

nyata di dalam industri minyak dan gas. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Corrosion is one of the phenomena of natural deterioration that causes 

economic and environmental damage due to structural failure of oil and gas 

infrastructure. Its natural spontaneous process has a devastating impact upon the 

long-term integrity of oil and gas infrastructure (Norhazilan et al., 2011; Abdullah, 

2017) Pipeline system is used to transport crude oils over long distances and hence, 

faces serious corrosion problem that can lead to system failure. For years, numerous 

failures of pipeline system that distribute crude oils and gas have been reported 

globally. Even though steel pipe materials with high strength grade such as X70 have 

been introduced, corrosion still persists and dominates the statistics as the major 

cause of pipeline failure. Of the many corrosion mechanisms, previous investigation 

results have concluded that the pipe is most likely to suffer severe corrosion damage 

due to Microbiology Influenced Corrosion (MIC) (Forte Giacobone et al., 2011; 

Abdullah et al., 2014; Nan et al., 2015; Afizza et al., 2016; Ching et al., 2016; 

Narenkumar et al., 2017). 

In general, the oil field is an interesting place for microbes to multiply 

aggressively. The conditions encounter a range of features, from cold to hot, and 

from fully aerobic to anaerobic. These conditions breed different types of 

microorganisms that have adapted to the environments in which they live. Microbial 

activity in any environment occurs in the presence of water, a carbon source, an 

electron donor and an electron acceptor, all of which can be present in oil pipelines 

(Almahamedh et al., 2011). This implies that the increase in corrosion rate is due to 

the presence of bacterial activities such as Sulfate Reducing Bacteria (SRB) which 

accelerate the rate of anodic and/or cathodic reactions (Muthukumar, 2014). It is a 

huge challenge to mitigate this delicate phenomenon, albeit the fact that it cannot be 
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simply eliminated altogether from the deteriorating infrastructure. Nevertheless, with 

careful steps, it can be well-controlled. Until today, the recommended MIC 

mitigation method by most companies is via biocide consumption. However, several 

issues associated with biocide need to be addressed such as environmental pollution 

and high cost of operation (Ashraf et al., 2014). Therefore, alternative strategies to 

MIC mitigation method need to be readily available in the near future in order to 

accommodate the concern on biocide usages. 

1.2 Background of Problem 

Oil companies are constantly under significant pressure to cut production 

costs, including the maintenance program. The pipeline system network transports 

oil and gas products from oil wells to processing terminals, distribution sites and 

lastly to purchasers all across the country. During the oil and gas transportation 

process, a continuous interaction between the product and the pipeline steel surface 

could result in a variety of corrosion deterioration mechanisms (AlAbbas et al., 

2013). A severely corroded pipeline is highly recommended to be replaced in order 

to maintain its integrity throughout its life span. However, this replacement requires 

enormous operational expenditure and substantial production loss. Nevertheless, the 

integrity of pipeline cannot be compromised as safety is the most crucial aspect that 

should be considered in this high-risk industry. 

Microbiologically Influenced Corrosion has been identified as the major 

cause of corrosion failures (Javed et al., 2016). MIC is a common mechanism of 

corrosion and it is used to designate corrosion due to the presence of microorganisms 

and their activities (Li et al., 2016). It is also believed to be culpable for diminishing 

pipeline’s integrity and increasing the costs of petroleum pipelines’ operations and 

maintenance to over 40% (AlAbbas et al., 2013; Afizza et al., 2016). Muthukumar 

(2014) highlighted that the petroleum production environment is particularly suitable 

for the MIC activities because it handles large volumes of de-aerated water. Previous 

studies have investigated the impact of MIC and its mitigation efforts; however, its 

role in deteriorating engineered materials remains misunderstood (Abdullah et al., 
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2014; Rasol et al., 2014; Mohd Ali, 2016). Electrochemical and microbial corrosion 

could exacerbate each other; thus, serious attention to control the phenomena should 

be raised to avoid greater risks of pipeline failure. The microbial contamination can 

result in the loss of production time and increased refining costs (Afizza et al., 2016); 

millions of dollars is an expected economic loss (Wang et al., 2005). Groysman 

(2017) stated that the oil, gas and refinery equipment are extremely vulnerable to a 

variety of corrosion phenomena that can lead to serious accidents and it is understood 

that SRB accounts for approximately 40% of internal corrosion in the oil and gas 

industry (Koch et al., 2001). Therefore, a minor yet critical element of microbial 

contamination control of petroleum production is a vital aspect that should be taken 

into consideration (Turkiewicz, Brzeszcz, & Kapusta, 2013). 

Biocides injection such as glutaraldehyde is a typical technique to mitigate 

MIC. This toxic and abrasive chemical needs to be handled carefully because it is 

harmful to living creatures (Lavania et al., 2011; Gomes et al., 2016). It is also costly 

and contributes to serious environmental pollutions. Increasing the dose of biocide 

may or may not be successful in overcoming the protections since microorganisms 

tend to be resistant to different types of biocides over time (McKinney & Pruden, 

2012; Otter et al., 2014).  Driven by the environmental pollution concern, several 

engineers and researchers have investigated the potential use of several types of 

natural biocides, namely cow urine (Lavania et al., 2011); cumin (Morshedi et al., 

2015) and eucalyptus oil (Ashraf et al., 2014) as alternatives to chemical biocides. 

However, these natural biocides are impractical from the operational cost perspective 

in mitigating MIC in the well-known oil and gas production due to its large network 

system. Furthermore, injection of biocides in the pipeline costs a handsome amount 

of money, namely due to raw material preparation and temporary termination of 

production operations. 

Ultraviolet (UV) radiation is one of the potential substances which has been 

developed as a non-physical inhibitor (NPI) in the past decade (Mohd Ali, 2016). 

Bacterial disinfection using UV radiation has been successfully used in municipal 

wastewater treatment and thus, carries great potential for the implementation in 

drinking water applications (Ashraf et al., 2014). The usage of UV technology in 
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water treatment industry offers several inherent advantages over most traditional 

technologies. However, it is not a direct application when it comes to oil and gas 

industry because crude oil in a system could have an impact on the UV treatment 

effectiveness. Nevertheless, Allison, Clough & Park (2008) stated that many of the 

crude oil pipelines operation were reported with more than 40% water. Thus, at least 

the MIC living in the water produced along with the crude oil could be mitigated by 

using UV radiation. UV radiation is a non-reagent technology which imparts energy 

to water stream for disinfection process. It is a fast, effective and environmental-

friendly bacterial disinfection method. Laboratory and field experiments have shown 

that injected UV radiation may be as effective as many biocides in acting as a 

treatment for microbial control (Abu Bakar et al., 2017). However, most previous 

studies focus on the level of effectiveness of the UV radiation to exterminate 

bacteria, rather than investigating its effect on mitigating corrosion, the after-effect of 

UV radiation on microbe reproduction and the impact to the carbon steel 

biocorrosion. If the performance of UV radiation treatment towards mitigating MIC 

in carbon steel pipelines can be further investigated and evaluated, perhaps it can be 

a great compliment or a substitute to the usage of costly chemical biocides. 

1.3 Research Statement 

The results from previous studies on the usage of UV to mitigate MIC in oil 

and gas pipeline is still fraught with many arguments, specifically on the role of MIC 

in the deterioration of engineering materials such as carbon steel pipeline. Most of 

the studies focused on the bacteria survival after the UV treatment or in other words, 

how much bacteria can be terminated by UV radiation (Clark, Luppens, Co, Tucker, 

& Petru, 1984; Lawal et al., 2010; Wang et al., 2005). Less attention was paid to the 

influence of the remaining bacteria on the continuity of the corrosion process in 

pipeline. This piece of information is extremely vital since the remaining small 

percentage of live bacteria, if not in dormant mode, can reproduce after the UV 

treatment is done and restart the corrosion process. If this happens, the whole process 

of UV treatment would be to no avail. Previous works on UV treatment also failed to 

interpret the efficiency of UV treatment under various operational and environmental 
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parameters. The question of how to optimize UV treatment for MIC mitigation 

according to different combination of operational and environmental parameters 

remains unrequited since previous experiments were done under fixed conditions. 

Various concerns emerge of its application in this regard: What is the suitable 

condition for UV operation? What about UV effectiveness on different type of 

microbe? Which one is more important, time of exposure to UV radiation or the 

intensity of UV lamp? All these questions must be answered with statistical 

evidences in order to uncover the capability of UV in MIC mitigation. 

The statistical evidence and numerical modelling on the level of governance 

of UV parameters towards bacteria survivability and its impact on the pipeline 

material is greatly lacking. This effort is vital to ensure that UV treatment can reach 

its optimum capability during the mitigation process. Details on sensitivity analysis 

on the parameter of UV technology are also currently missing from the literature. 

Consequently, the waste from UV emission cannot be reduced and information on 

preliminary monitoring and MIC mitigation plan involving UV systems is barely 

available. The availability of data pertaining to UV parameters’ influence on bacteria 

survival and corrosion impacts are crucial to ensure that the treatment system could 

reach its maximum efficiency during the treatment process. Furthermore, 

investigating the versatility of UV treatment on various bacteria in local environment 

conditions is essential to represent the data on UV treatment in the real site 

conditions. This is because different strains of MIC might have different responses 

towards different environments (Mohd Ali, 2016; Abdullah, 2017). In addition, there 

is no solid evidence proving that the commercially available Sulfate-Reducing 

Bacteria (SRB) can closely simulate the performance of the SRB strain which has 

been isolated from local site. 

This research provides empirical evidence on what will happen to the 

remaining bacteria after UV treatment. If the bacteria are not in dormant mode, the 

research seeks to find out to what extend the level of impact towards corrosion 

severity can be practically measured? Moreover, statistical evidence can 

quantitatively display the performance of UV, not only on bacteria termination, but 

also on the mitigation of MIC. This information is highly required by the industry so 
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that UV technology can be well designed for full scale MIC mitigation exercise on 

the corroding pipeline, comparable to biocide injection. 

1.4 Research Aims and Objectives 

This research aims to investigate the performance of UV treatment in 

controlling Microbiology Influenced Corrosion (MIC) in steel pipeline caused by 

different strains of Sulfate Reducing Bacteria (SRB). The performance of UV 

treatment is measured using multi-regression numerical model, correlating metal loss 

volume, operational parameters and treated volume. The following objectives are 

identified as steps towards achieving the research aims: 

1. To identify the microbial diversity in Baram-Consortium and most suitable 

enriched media for each SRB strain. 

2. To investigate the optimum growth pattern of different strains of SRB under 

the influence of pH and temperature. 

3. To identify the metal loss rate of grade X70 carbon steel coupon, subject to 

SRB optimum growth condition. 

4. To determine the correlation between the effectiveness of UV radiation 

treatment on MIC mitigation process and the operational parameters, 

including time of exposure, types of UV lamps, numbers of UV lamps and 

treated volume. 
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1.5 Research Scope 

This research consists of laboratory scale experimental work to reveal the 

effectiveness of UV radiation in controlling MIC activities and their impact on API 

5L X70 carbon steel coupons. Two types of MIC samples that focus mainly on SRB 

strains were used as the experiment’s substances under the simulation of anaerobic 

condition in laboratory. Samples of SRB consortium cultivated from raw crude oil 

gathered from the crude oil in one of the main trunk lines at Baram Delta Operation, 

Sarawak, Malaysia and American Type Culture Collection SRB (ATCC7757) 

growth were used for the comparative study. Investigation on bacteria growth and 

optimum environment was performed under various media, pH levels and 

temperatures for SRB to proliferate, respectively. The impact of UV exposure to bio-

corrosion conditions on carbon steel coupon for 28 days in certain samples is 

discussed in this study for disinfection alternatives. One-Factor-At-a-Time (OFAT) 

analysis was performed under the influences of UV lamp consequent to the time of 

exposure, number of UV lamps, types of UV lamps and treated volume for both 

bacteria samples. Response Surface Methodology (RSM) was used as a tool to 

perform further analysis upon uncovering the aforementioned relationships between 

the UV parameter influences. However, only samples of Baram-C were used in the 

RSM analysis due to time and cost allocation constrains. Graphical and statistical 

approaches were also utilized to extend the understanding on the findings of this 

study. 

1.6 Significant of Research 

On this note, the outcome of this research will provide comparable data and 

profound understanding on the effect of several UV parameters on the extermination 

of several bacteria strains and metal loss. The optimum efficiency of the UV 

parameter usage can then be identified numerically. The proposed model from this 

study can also predict the response of metal loss after UV treatment. Therefore, 

future works on the development of the UV treatment related to financial and 

corrosion mitigation scheme can be properly designed. Solid evidence on the UV 
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performance needs to be established to ensure that UV radiation could be a viable 

option for mitigating MIC activity and simultaneously, minimizing the bio-corrosion 

impact triggered by MIC. This will shed light on the possibility of utilizing UV as 

the best complement or replacement for biocides application as an improved and 

more sustainable MIC mitigation technology. In addition, these findings may also be 

considered as a kick start towards serious efforts to harness UV technology as a 

practical technology in corrosion mitigation by oil and gas industry instead of 

applying it only as conceptual technology at a pilot scale. 

1.7 Structure of the Thesis 

This thesis is structured into six chapters.  The general principle and 

background of the study are described in Chapter 1. This chapter also justified the 

research problem and significant of the conducted study. The relevant issues and 

literature of the research objective is described in Chapter 2. Comprehensive 

literature survey and overview from previous research are discussed among research 

subjects. Information on MIC mechanism and UV potential are also reviewed. 

Chapter 3 is organized to describe the methodology of study in attaining 

research objectives. Particulars to conduct laboratory experimentation works, design 

of experiment and statistical approach are well elaborated. Overall research 

methodology is diverted into three components to give clear view and better 

understanding through all elements in the research study. Results and analysis 

focusing on the behaviour of research microorganism, their growth and preferable 

environment conditions are presented in Chapter 4. The detailed bacteria 

identification and information are also explained in this section. Impact to 

biocorrosion of the respected bacteria is explicated to verify their threat to the 

reliability and integrity to the pipelines system particularly to the carbon steel. 

In Chapter 5, the data analysis for mitigation properties is reported. 

Influences of various UV parameters are shown and elucidated. The interaction 

between particular elements is analysed. Diagnostic on the Response Surface 
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Methodologies are described and predictive formula to estimate metal loss after the 

UV treatment is also presented. Argument in the optimization upon UV treatment 

and impact to the attached biofilm are also elaborated. Chapter 6 summarised the 

major conclusions drawn from the research objectives and the recommendations is 

also outlined for future research. Overall, this thesis provides visionary documents 

for future works and possible implementation of the UV treatment in oil and gas 

industry. 
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