BEHAVIOR OF FIBER REINFORCED POLYMER GROUTED SPLICE CONNECTIONS

KIARASH KOUSHFAR

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

School of Civil Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

JUNE 2020
DEDICATION

This thesis is dedicated to my beloved father, Abbas Koushfar who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my beloved mother, Fatemeh Razavi who taught me that even the largest task can be accomplished if it is done one step at a time. This thesis is dedicated to my dearest brothers, Kia and Keyarmin Koushfar.

Also, this thesis is dedicated to all those who believe in the richness of learning.
ACKNOWLEDGEMENT

The realization of this research was only possible due to the several people's collaboration, to which desire to express my gratefulness.

I would like to thank my supervisors, Prof. Dr. Ahmad Baharuddin Abd. Rahman, Associate Prof. Dr. Yusof Ahmad and Dr. Sophia C. Alih. I am grateful for the trust deposited in my work and for the motivation demonstrated along this research. Their support was without a doubt crucial in my dedication this investigation. Prof. Dr. Ahmad Baharuddin Abd. Rahman has been the ideal thesis supervisor. Without his inspirational instruction and guidance I was not able to complete this project. His sage advice, insightful criticisms, and patient encouragement aided the writing of this thesis in innumerable ways.

Gratitude is also expressed to my co-supervisor whom without his support this project would not have been possible. Associate Prof. Dr. Yusof Ahmad and Dr. Sophia C. Alih for providing the materials which immensely eased my financial burden. His guidance, support, understanding, and patience throughout my research was greatly needed and deeply appreciated.

Appreciation is extended to all laboratory staff for advices and suggestions of the work, and for the friendship that always demonstrated along these months of this project.
ABSTRACT

Grouted splice connections are widely used in joining precast concrete wall-to-wall and wall-to-column connections. However, not many studies on grouted splice connections could identify and predict their minimum bar embedded lengths and ultimate strength precisely which may lead to catastrophic failures in the structure. Moreover, the majority of the published studies are limited to conventional steel products which could not predict satisfactorily the behavior and performance of the grouted splice connections particularly when new materials and methods are adopted. In this regard, the main aim of this study was to investigate the behavior and performance of grouted splice connections using sleeves manufactured with steel pipes and new sheet materials of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) sleeves. In order to predict the behavior and performance of the proposed FRP grouted splice connections, empirical relationships, Artificial Neural Network (ANN), and Finite Element Method (FEM) were developed. In Phase 1 of this study, a total of 165 grouted splice connections with different shapes, diameters, embedded lengths, and sleeve materials were tested to failure under incremental tensile load. In Phases 2 and 3, the experimental results obtained from Phase 1 were used as raw data to establish the analytical behavior and performance of the grouted sleeve connections using ANN and FEM, respectively. The results of Phase 1 show that the CFRP sleeves provided better confinement effect, hence contributed higher bond and tensile strengths compared to GFRP sleeves with similar design parameters. New equations were developed based on experimental results in Phase 1 and had shown good prediction of the ultimate tensile strengths of the proposed connections with the reliability ratios close to 1.0. Then in Phase 2, the analytical results demonstrate the superiority of ANN model compared to the other methods in predicting the ultimate tensile strength and behavior of all the proposed connections. The advantage of ANN model is the minimum reliance on the experimental data in estimating the performance of the specimens. The FEM results of Phase 3 indicate that the predicted behaviors of the grouted splices are in line with the experimental results. Also, the FEM results show the importance of providing adequate confinement at regions near the center of the sleeve where the highest stress concentration occurs. In conclusion, CFRP sheets generated the highest confinement, while the embedment length, interlocking mechanism and shape of the FRP sleeves contributed the highest impact on the bond strength, axial stiffness, ultimate tensile strength and ductility of the proposed FRP specimens. Finally, although the proposed empirical relationships predicted acceptable ultimate tensile strength of FRP specimens with high accuracy, the ANN model found to be more superior and it can be used with minimum dependency on experimental data.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction
1.2 Problem Statement
1.3 Objectives
1.4 Scopes of Research
1.5 Thesis Outline

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction
2.2 Bond Mechanism
 2.2.1 Chemical Adhesion
 2.2.2 Frictional Resistance
2.3 Factors Influencing Bond Behavior
 2.3.1 Confinement
 2.3.2 Strength of Bonding Material
2.4 Bond between Fiber-Aluminum Interfaces
2.5 Previous Studies of Mechanical Splices
2.6 Experimental Setups for Tensile Load Test 65
2.7 Summary 67

CHAPTER 3 RESEARCH METHODOLOGY 69
3.1 Introduction 69
3.2 Test Specimens 73
 3.2.1 Labeling of Specimens 77
 3.2.2 Control Specimens 79
 3.2.3 Rigid Corrugated Aluminum Sleeve Wrapped with FRP Sheets (R-FRP) 83
 3.2.4 Flexible Corrugated Aluminum Sleeve Wrapped with FRP Sheets (F-FRP) 84
 3.2.5 Tapered GFRP Grouted Splices (T-FRP) 86
3.3 Preparation of Grouted Splices 88
 3.3.1 Preparation of R-FRP and F-FRP Sleeves 88
 3.3.2 Preparation of T-FRP Sleeves 89
 3.3.3 Preparation of Bolted and Welded Sleeves 90
 3.3.4 Installation and Preparation of Grouted Splices 90
3.4 Materials Properties 93
 3.4.1 Sika Grout-215 93
 3.4.2 Reinforcement Bars 94
 3.4.3 Epoxy Resin, Epicote 1006 95
 3.4.4 Glass Fibers 96
 3.4.5 Carbon Fibers 97
3.5 Outline of the Tensile Test Program of the Grouted Splices 98
3.6 Tensile Test of FRP Composite Materials 100

CHAPTER 4 BEHAVIOR OF THE GROUTED SPLICES UNDER INCREMENTAL TENSILE LOAD 103
4.1 Introduction 103
4.2 Test Results of Tensile Load Test 103
 4.2.1 Ultimate Tensile Strengths of Grouted Splices 110
 4.2.2 Measurement of Ultimate Displacement of Grouted Splices 113
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Failure Modes of Grouted Splices</td>
<td>114</td>
</tr>
<tr>
<td>4.3</td>
<td>Load-Displacement Responses of Grouted Splices</td>
<td>115</td>
</tr>
<tr>
<td>4.4</td>
<td>Behavior of Strain of Grouted Splice Components</td>
<td>118</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Tensile Strain Responses in Spliced Bar</td>
<td>118</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Tensile Strain Responses in FRP Sleeve</td>
<td>120</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Transverse Strain Responses in FRP Sleeve</td>
<td>122</td>
</tr>
<tr>
<td>4.5</td>
<td>Mechanisms and Modes of Failure of Grouted Splices</td>
<td>124</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Grout Bond-Slip Failure</td>
<td>125</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Bar Bond-Slip Failure</td>
<td>126</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Aluminum Tube bond-slip Failure</td>
<td>128</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Sleeve Fracture</td>
<td>129</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Bar Fracture</td>
<td>131</td>
</tr>
<tr>
<td>4.6</td>
<td>Yield Point and Stiffness of Grouted Splices</td>
<td>132</td>
</tr>
<tr>
<td>4.7</td>
<td>Ratios of Strength, Ductility and Yield of Grouted Splices</td>
<td>145</td>
</tr>
<tr>
<td>4.8</td>
<td>Bond Stress in Grouted Splices</td>
<td>153</td>
</tr>
<tr>
<td>4.9</td>
<td>The Bar-Grout and Sleeve-Grout Interlocking Mechanisms and the Confinement Effects on the Load Resisting Mechanisms of the Grouted Splices</td>
<td>155</td>
</tr>
<tr>
<td>4.10</td>
<td>Effects of Sleeve Design parameters on Tensile Strength of the Grouted Splices</td>
<td>158</td>
</tr>
<tr>
<td>4.11</td>
<td>Effects of Sleeve Diameter on Tensile Strength, Pre-Yield Stiffness, and Bond Strength</td>
<td>164</td>
</tr>
<tr>
<td>4.12</td>
<td>Effects of Bar Embedded Length on Tensile Strength and Pre-Yield Stiffness of the FRP Grouted Splices</td>
<td>166</td>
</tr>
<tr>
<td>4.13</td>
<td>Minimum Bar Embedded Length</td>
<td>169</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Determining the Minimum Bar Embedded Length Using Graphical Method</td>
<td>170</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Determining the Minimum Bar Embedded Length Using Ultimate Bond Stress Method</td>
<td>175</td>
</tr>
<tr>
<td>4.14</td>
<td>Prediction of Tensile Strength of FRP Grouted Splice Connections</td>
<td>177</td>
</tr>
<tr>
<td>4.15</td>
<td>Summary</td>
<td>186</td>
</tr>
</tbody>
</table>

CHAPTER 5 PREDICTING THE BEHAVIOR OF THE FRP GROUTED SPLICE CONNECTION USING ARTIFICIAL NEURAL NETWORKS 189

5.1 Introduction 189
5.2 Network Architectures 190
5.3 Neural Network Modeling 192
5.4 Comparison of ANN Strength Model and Empirical Equations Derived by SPSS software with Experimental Results 199
5.5 Estimating the Tensile Strength of the Grouted Splices with the Proposed Minimum Bar Embedded Lengths 208
5.6 Comparison between ANN Model and Analytical Expression of the Load-Displacement Behavior of FRP Grouted Splice Connections 215
5.7 Comparison of ANN Strength Model with Empirical Models 218
5.8 Summary 229

CHAPTER 6 FINITE ELEMENT MODEL 231
6.1 Numerical Modeling 231
6.2 Steps in Finite Element Analysis 232
6.2.1 Pre-Processing 232
6.2.2 Processing 233
6.2.3 Post-Processing 233
6.3 General Analysis Procedure for Static Structural Problems 234
6.3.1 Build the Simulation Model 235
6.3.1.1 Clear the Database 235
6.3.1.2 Attribute Suitable Material Properties to the Model 235
6.3.1.2.1 Grout Material 236
6.3.1.2.1.1 Description of PLANE182 Element 236
6.3.1.2.1.2 Description of PLANE183 Element 237
6.3.1.2.2 FRP Materials 240
6.3.1.2.3 Aluminum Tube 241
6.3.1.2.4 Steel Reinforcement Material 242
6.3.1.3 Developing the Geometric Model of the Problem 245
6.3.1.3.1 Solid Modeling 246
6.3.1.3.2 Direct Generation 247
6.3.1.3.3 Importing External CAD 248
6.3.1.4 Defining the Contact Elements

6.3.1.4.1 CONTA171 2-D Surface-to-Surface Contact

6.3.1.4.2 CONTA172 2-D 3-Node Surface-to-Surface Contact

6.3.1.5 Mesh the Model

6.3.1.6 Impose the Boundary and Loading Conditions

6.3.1.7 ANSYS® Solution Control

6.3.1.7.1 The Full Method

6.3.1.7.2 The Reduced Method

6.3.1.7.3 The Mode Superposition Method

CHAPTER 7 PREDICTING THE BEHAVIOR OF THE FRP GROUTED CONNECTIONS USING FINITE ELEMENT ANALYSIS

7.1 Introduction

7.2 Test Results of Finite Element Analysis of the Grouted Splices

7.3 Comparison of Load-Displacement Responses between FE Analysis and Experimental Results of Rigid Corrugated Aluminum Tube Wrapped with FRP Sheets (R-FRP)

7.4 Comparison of Load-Displacement Responses between FE Analysis and Experimental Results of Flexible Corrugated Aluminum Tube Wrapped with FRP Sheets (F-FRP)

7.5 Comparison of Load-Displacement Responses between FE Analysis and Experimental Results of Bolted and Welded Steel Grouted Splices (K-W)

7.6 Finite Element Stresses Distribution Contours of the Grouted Splices

7.7 Summary

CHAPTER 8 CONCLUSIONS

8.1 Introduction

8.2 Conclusion

8.2.1 Performance and Behavior of the Proposed Grouted Splice Connections Under Incremental Tensile Load
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2</td>
<td>Analytical Prediction of the Ultimate Tensile Strength, Load-Displacement Behavior, and Minimum Embedded Length of FRP Grouted Splice Connections</td>
<td>281</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Predicting the Behavior and Performance of The FRP Grouted Splices Using Neural Networks</td>
<td>283</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Behavior of the Grouted Splice Connections Using Finite Element Analysis (FEA)</td>
<td>284</td>
</tr>
<tr>
<td>8.3</td>
<td>Future Works</td>
<td>285</td>
</tr>
</tbody>
</table>

REFERENCES | 287
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>The interlaminar shear strength of Novel FML and Glare laminate [85]</td>
<td>30</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Examples of labeling of specimens</td>
<td>79</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Geometrical properties of control specimens, K-P series</td>
<td>80</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Geometrical properties of control specimens, K-W series</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Geometrical properties of control specimens, K-R series</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Geometrical properties of control specimens, K-F series</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Geometrical properties of R-FRP series</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Geometrical properties of F-FRP series</td>
<td>85</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Geometrical properties of T-FRP series</td>
<td>87</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Mechanical and Physical Properties of Sika Grout-215</td>
<td>94</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Properties of Y16 reinforcement bars under incremental tensile load</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Mechanical and Physical Properties of EPICOTE 1006 SYSTEM</td>
<td>96</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Specification of woven roving E-glass fibers</td>
<td>97</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Specification of woven roving E-glass fibers</td>
<td>98</td>
</tr>
<tr>
<td>Table 3.14</td>
<td>Geometrical properties of FRP composite coupons</td>
<td>102</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Results of tensile load tests of control series</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Results of tensile load tests for R-FRP grouted splices</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Results of tensile load tests for F-FRP grouted splices</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Results of tensile load tests for T-FRP grouted splices</td>
<td>108</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Tensile Strength, P_{tu}, of R-FRP and F-FRP grouted splices</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Tensile Strength, P_{tu}, of T-FRP grouted splices</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Pre-yield stiffness and yield point of control and R-FRP series</td>
<td>139</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Pre-yield stiffness and yield point of F-FRP series</td>
<td>140</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Pre-yield stiffness and yield point of T-FRP series</td>
<td>142</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Pre-yield stiffness of R-FRP and F-FRP series</td>
<td>144</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Pre-yield stiffness of T-FRP series</td>
<td>144</td>
</tr>
</tbody>
</table>
Table 4.12 The yield, strength, and ductility ratios of R-FRP series 146
Table 4.13 The yield, strength, and ductility ratios of R-FRP series 148
Table 4.14 The yield, strength, and ductility ratios of T-FRP grouted splices 149
Table 4.15 Strength ratio, μ_s, of R-FRP and F-FRP grouted splices 152
Table 4.16 Strength ratio, μ_s, of T-FRP grouted splices 153
Table 4.17 Bond stress, $\bar{\tau}$, of R-FRP and F-FRP grouted splices 154
Table 4.18 Bond stress, $\bar{\tau}$, of T-FRP grouted splices 155
Table 4.19 Minimum bar embedded length, $l_{\text{min,gr}}$, of R-FRP and F-FRP specimens 174
Table 4.20 Minimum bar embedded length, $l_{\text{min,gr}}$, of T-FRP specimens 174
Table 4.21 Minimum bar embedded length, $l_{\text{min,ult}}$, of R-FRP and F-FRP specimens 176
Table 4.22 Minimum bar embedded length, $l_{\text{min,ult}}$, of T-FRP specimens 176
Table 4.23 Comparisons between ultimate tensile strength of predicted using Eqn. 4.61 and experimental and of R-FRP and F-FRP grouted splices 183
Table 4.24 Comparisons between ultimate tensile strength of predicted using Eqn. 4.62 and experimental of T-FRP grouted splices 184
Table 5.1 Scaling equations for input and target nodes 194
Table 5.2 Distribution of differences for different strength models relative to experimental values 202
Table 5.3 Comparison between experimental tensile strength, $P_{u,\text{Exp}}$, predicted tensile strength by neural networks, $P_{u,\text{NN}}$, and predicted tensile strength by Equation 5.2, $P_{u,\text{pre}}$, of the grouted splices 203
Table 5.4 Comparison between experimental tensile strength, $P_{u,\text{Exp}}$, predicted tensile strength by neural networks, $P_{u,\text{NN}}$, and predicted tensile strength by Equation 5.3, $P_{u,\text{pre}}$, of the grouted splices 204
Table 5.5 Comparison between experimental tensile strength, $P_{u,\text{Exp}}$, predicted tensile strength by neural networks, $P_{u,\text{NN}}$, and predicted tensile strength by Equation 5.4, $P_{u,\text{pre}}$, of the grouted splices 206
Table 5.6 Minimum bar embedded length, $l_{\text{min,gr}}$, and the relative tensile strengths of R-FRP and F-FRP specimens predicted by neural networks, $P_{u,\text{NN}}$ 214
Table 5.7 Minimum bar embedded length, $l_{\text{min,gr}}$, and the relative tensile strengths of T-FRP specimens predicted by neural networks, $P_{u,NN}$

Table 5.8 Comparison between experimental load-displacement behavior of specimen R-C7L125-1, P_{Exp}, with the predicted behavior by neural networks, P_{NN}, and Equations 5.5 and 5.6, P_{pre}

Table 5.9 Comparison between experimental load-displacement behavior of specimen F-G7L175-1, P_{Exp}, with the predicted behavior by neural networks, P_{NN}, and Equations 5.7 and 5.8, P_{pre}

Table 5.10 Comparison between experimental load-displacement behavior of specimen F-G7L75-1, P_{Exp}, with the predicted behavior by neural networks, P_{NN}, and Equations 5.9 and 5.10, P_{pre}

Table 6.1 Consistent unit systems

Table 7.1 Comparison between FE analysis tensile strength by ANSYS, $P_{u,FE}$, and experimental tensile strength, $P_{u,Exp}$, of R-FRP grouted splices

Table 7.2 Comparison between FE analysis tensile strength by ANSYS, $P_{u,FE}$, and experimental tensile strength, $P_{u,Exp}$, of F-FRP grouted splices

Table 7.3 Comparison between FE analysis tensile strength by ANSYS, $P_{u,FE}$, and experimental tensile strength, $P_{u,Exp}$, of K-W series
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Installation of grouted splice connections [6]</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Procedure of installing grouted splice sleeve connections</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Distribution of bond stress at different levels of load for short embedded lengths [25]</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Bond stress versus slip response [32]</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>(a) Bond force transfer mechanisms [36] (b) Typical bond stress-slip relationship [38]</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Development of concrete crushing in front of the rib as bar slips</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Frictional model of bond: $f_b = \mu \sigma_{lat}$ [45]</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Stress-slip responses under confinement of transverse reinforcement [44]</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Relationships of $U/\sqrt{f_c}$ versus $\sqrt{f_n}$ by Untrauer [24]</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Mechanism of bond resistance in confined concrete: (a) inclined cracks at steel lugs; (b) crushing and shear cracks of concrete keys; and (c) progressive shearing-off of the concrete keys [49]</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Relationships of bond stress versus displacement [43]</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Relationship of bond stress versus concrete strength [33]</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Configuration of continuous fiber-metal-epoxy hybrid composite [73]</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Tensile behavior of the laminates studied</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Compressive behavior of the laminates studied</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>The stacking arrangement of the aluminum and composite sheets in the picture frame mold [80]</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>Typical load–displacement relationships of SCB tests at 2 mm/min on composites/untreated aluminum alloy 2024-T3 [80]</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Summary of the interfacial fracture properties of aluminum-based system [80]</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>The mechanical tests: (a) tensile test; (b) flexural test; (c) interlaminar shear test; (d) floating roller peeling test [85]</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>The laminating design of novel FMLs [85]</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.20</td>
<td>The delamination of metal layer [85]</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.21</td>
<td>Mechanical connections</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.22</td>
<td>(a) and (b) Proprietary splices tested by Jansson, (c) test setup [11]</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.23</td>
<td>General features of HPWEM [112]</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.24</td>
<td>Sketch of proposed specimens by Qiong et al. [114]</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.25</td>
<td>Different types of grouted sleeve connections used by [114]</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.26</td>
<td>Details of the specimens used by Yajun et al. [115]</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.27</td>
<td>Grouted splice sleeve [109]</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.28</td>
<td>Grouted splice sleeve [110]</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.29</td>
<td>Grouted splice sleeve incorporated in [111]</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.30</td>
<td>Typical specimen for tests on the column-to-column grouted sleeve connection used by Tullini and Minghini [6]</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.31</td>
<td>Typical geometry and reinforcing layout [119]</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.32</td>
<td>Details of the proposed grouted splice sleeve connector by [129]</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.33</td>
<td>Failure modes observed by Alias et al. [129] including (a) internal sleeve-grout, (b) bar pullout, and (c) bar fracture failures</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.34</td>
<td>Details of the proposed grouted splice sleeve connector by Alias et al. [130]</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.35</td>
<td>Details of the HSS sleeve used by Seo et al. [131]</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.36</td>
<td>Details of the test setup for HSS specimens [131]</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.37</td>
<td>Failure modes observed by Seo et al. [131]</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.38</td>
<td>The resistance mechanism of HSS [131]</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.39</td>
<td>Proposed grouted splice connection by [132]</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.40</td>
<td>Test setup and placement of the strain gauge and LVDT [132]</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.41</td>
<td>Failure modes observed by [132]</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.42</td>
<td>The BPE model [105]</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.43</td>
<td>Proposed grouted spiral connection by [133]</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.44</td>
<td>Axial pullout test setup [134]</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.45</td>
<td>Flexural pullout test setup [134]</td>
<td>55</td>
</tr>
</tbody>
</table>
Figure 3.16 Design parameters of F-FRP grouted splices
Figure 3.17 Design parameters of T-FRP grouted splices
Figure 3.18 Tapered GFRP sleeves (T-FRP series)
Figure 3.19 Preparation of R-FRP and F-FRP sleeves
Figure 3.20 Preparation of T-FRP sleeves
Figure 3.21 Preparation of K-W series by placing smaller pipes and welding the bolts
Figure 3.22 Installation and placement of grouted splices
Figure 3.23 Grouting and installation of the upper reinforcement bar
Figure 3.24 R-C and R-G series
Figure 3.25 Placement of strain gauges
Figure 3.26 Placement of strain gauges, F-G series
Figure 3.27 Typical elements of grouted splice specimen
Figure 3.28 Woven roving E-glass fibers
Figure 3.29 Woven roving carbon fibers
Figure 3.30 Test setup, strain gauge placement
Figure 3.31 Data acquisition system
Figure 3.32 FRP composite coupons
Figure 4.1 LVDT placement to measure ultimate displacement of grouted splices
Figure 4.2 Load-displacement responses of control specimens
Figure 4.3 Load-displacement responses of R-FRP grouted splices
Figure 4.4 Load-displacement responses of F-FRP grouted splices
Figure 4.5 Load-displacement responses of T-FRP grouted splices
Figure 4.6 Strain gauge placement of the specimens
Figure 4.7 Stress-strain responses of R-FRP grouted splices
Figure 4.8 Stress-strain responses of F-FRP grouted splices
Figure 4.9 Stress-strain responses of T-FRP grouted splices
Figure 4.10 Stress-strain responses of R-FRP grouted splices
Figure 4.11 Stress-strain responses of F-FRP grouted splices
Figure 4.12 Stress-strain responses of T-FRP grouted splices
Figure 4.13 Stress-strain responses of R-C series
Figure 4.14 Stress-strain responses of F-C series
Figure 4.15 Stress-strain responses of R-G series
| Figure 4.16 | Grout bond slip failure | 125 |
| Figure 4.17 | Mechanism of bar bond-slip failure | 126 |
| Figure 4.18 | Crushing of the grout in front of the rib as bar slips (Gray: displaced rib position) | 127 |
| Figure 4.19 | Bar bond–slip failure of specimen R-C6L125-1 | 127 |
| Figure 4.20 | Stress distribution (modified from Ferguson et al.) [25] | 128 |
| Figure 4.21 | Aluminum tube bond–slip failure of specimen F-G6L125-1 | 129 |
| Figure 4.22 | Sleeve fracture failure | 131 |
| Figure 4.23 | Bar fracture | 132 |
| Figure 4.24 | Pre-yield, post-yield, and yield point of specimens failed in ductile manner | 134 |
| Figure 4.25 | Pre-yield, post-yield, and yield point of specimens with brittle behavior | 135 |
| Figure 4.26 | Comparison of stiffness between: (a) control specimen and (b) FRP grouted splice | 136 |
| Figure 4.27 | Mechanism of Bond Resistance in Confined Concrete: (a) inclined cracks at steel lugs; (b) crushing and shear cracks of grout keys; and (c) progressive shearing-off of the grout keys | 137 |
| Figure 4.28 | Mechanical interlocking mechanism of bond and componential stresses | 156 |
| Figure 4.29 | Mechanism of radial crack propagation and confinement by sleeve | 157 |
| Figure 4.30 | The effects of sleeve design parameters on confinement | 158 |
| Figure 4.31 | Comparison between tensile strength of T-FRP, R-FRP, and F-FRP specimens | 159 |
| Figure 4.32 | The sleeve design parameters in K-P, K-R, and K-F series | 161 |
| Figure 4.33 | Comparison between tensile strength of R-FRP, F-FRP, and control specimens K-P, K-R, and K-F | 161 |
| Figure 4.34 | Comparison between tensile strength of R-FRP, F-FRP, and control specimens | 162 |
| Figure 4.35 | FRP grouted splices failed under axial and radial tension | 163 |
| Figure 4.36 | Effects of sleeve diameter on tensile strength of T-FRP Specimens | 165 |
| Figure 4.37 | Effects of sleeve diameter on pre-yield stiffness of T-FRP Specimens | 165 |
| Figure 4.38 | Effects of inner diameter at mid-length of sleeve on bond strength of T-FRP specimens | 166 |
Figure 4.39 Effects of bar embedded lengths on tensile strength of FRP grouted splices
Figure 4.40 Effects of bar embedded lengths on pre-yield stiffness of FRP grouted splices
Figure 4.41 Relationships between μ_s and L_e of R-FRP grouted splices
Figure 4.42 Relationships between μ_s and L_e of F-FRP grouted splices
Figure 4.43 Relationships between μ_s and L_e of T-FRP grouted splices
Figure 4.44 Comparison between minimum embedded lengths proposed by graphical and ultimate bond stress methods
Figure 4.45 Free body diagram of stress in the grouted splices suggested by Einea [18]
Figure 4.46 Free body diagram of stress of the FRP grouted splice connection used in this study
Figure 4.47 Relationship of $\tau / \sqrt{f_g}$ versus $\sqrt{\sigma_{n,b}}$ [24]
Figure 4.48 Comparison of predicted values of ultimate tensile load by Equations 4.59 and 4.60 versus experimental values
Figure 5.1 Schematic drawing of the components of a biological neuron [150]
Figure 5.2 Schematic diagram of ANN models in this study
Figure 5.3 Mean Squared Error (MSE) versus numbers of hidden layer neurons
Figure 5.4 Regression value (R) versus NN 5-n-1
Figure 5.5 Performance of NN 5-10-1
Figure 5.6 Training state of NN 5-10-1
Figure 5.7 Regressions of training, validation and test data simulated by NN 5-10-1
Figure 5.8 Comparison of various predicted values of P_u versus experimental data for NN5-10-1
Figure 5.9 Comparison of various predicted values of P_u versus experimental data for Equation 6.2 to 6.4
Figure 5.10 Comparison of various predicted values of P_u versus experimental data for all models
Figure 5.11 Schematic diagram of NN4-10-1 for cylindrical CFRP and GFRP specimens
Figure 5.12 Schematic diagram of NN5-10-1 for tapered GFRP Specimens
Figure 5.13 Performance of optimal neural networks
Figure 5.14 Training state of optimal neural networks
Figure 5.15 (a) Regressions of training, validation and test data simulated by NN4-10-1 for cylindrical CFRP specimens 212
Figure 5.15 (b) Regressions of training, validation and test data simulated by NN4-10-1 for cylindrical CFRP specimens 212
Figure 5.15 (c) Regressions of training, validation and test data simulated by NN5-10-1 for tapered GFRP specimens 213
Figure 5.16 The experimental and analytical responses of the grouted Splices 216
Figure 5.17 Schematic diagram of NN5-10-1 for all specimens 217
Figure 5.18 Performance of NN 5-10-1 217
Figure 5.19 Training state of NN 5-10-1 217
Figure 5.20 Regression of training, validation, and test data simulated by NN 5-10-1 218
Figure 5.21 Comparison of predicted values of incremental tensile load by ANN versus experimental values 219
Figure 5.22 Comparison of predicted values of incremental tensile load by Equations 5.35, 5.36, and 5.37 versus experimental values 219
Figure 5.23 Comparison between experimental load-displacement behavior of specimens (a) R-C7L125-1 and (b) R-G7L125-2, with the predicted behavior by neural networks and Equations 5.5 and 5.6. 220
Figure 5.24 Comparison between experimental load-displacement behavior of specimens (a) F-C7L175-2 and (b) F-G6L175-1, with the predicted behavior by neural networks and Equations 5.7 and 5.8. 224
Figure 5.25 Comparison between experimental load-displacement behavior of specimens (a) T-G5D75L125-1 and (b) T-G4D50L175-1, with the predicted behavior by neural networks and Equations 5.9 and 5.10. 227
Figure 6.1 PLANE182 and PLANE183 solid elements [174] 236
Figure 6.2 The geometry of 4-node PLANE182 element [174] 237
Figure 6.3 The geometry of 8-node or 6-node PLANE183 element [174] 238
Figure 6.4 Typical stress-strain curve for the Sika grout 215 239
Figure 6.5 Simplified stress-strain curve for the grout used in finite element model 240
Figure 6.6 Applied graph of the GFRP and CFRP materials 241
Figure 6.7 The stress-strain relationship of the aluminum material 242
Figure 6.8 The simplified stress-strain relationship of the aluminum Material 242
Figure 6.9 Simplified stress-strain curve for steel reinforcement used in finite element model 243
Figure 6.10 Finite element models of specimens R-FRP series in ANSYS® 243
Figure 6.11 Finite element models of F-FRP series in ANSYS® 244
Figure 6.12 Finite element models of K-W series in ANSYS® 245
Figure 6.13 CONTA171 2-D Surface-to-Surface Contact [174] 249
Figure 6.14 CONTA172 2-D 3-Node Surface-to-Surface Contact [174] 250
Figure 6.15 Bond-slip curve for ripped steel bars embedded in concrete 251
Figure 6.16 (a) Free mesh versus (b) mapped mesh [174] 253
Figure 6.17 Meshing and boundary conditions of R-C series in ANSYS® 254
Figure 6.18 The load-displacement pattern used in finite element Model 255
Figure 7.1 Comparison of load-displacement curves between the FE analysis and the experiments on R-FRP series 262
Figure 7.2 Comparison between load-displacement curves obtained from the experiments and the FE analysis on the flexible corrugated aluminum-FRP specimens (F-FRP Series) 264
Figure 7.3 Comparison of load-displacement curves between the FE analysis and the experiments on the K-W series 267
Figure 7.4 Von Mises stress contours for (a) R-G6L75, (b) R-G7L75, (c) R-C6L75, and (d) R-C7L75 with 75 mm embedment length 271
Figure 7.5 Von Mises stress contours for (a) F-G6L75, (b) F-G7L75, (c) F-C6L75, and (d) F-C7L75 with 75 mm embedment length 271
Figure 7.6 Von Mises stress contours for (a) R-G6L125, (b) R-G7L125, (c) R-C6L125, and (d) R-C7L125 with 125 mm embedment length 273
Figure 7.7 Von Mises stress contours for (a) F-G6L125, (b) F-G7L125, (c) F-C6L125, and (d) F-C7L125 with 125 mm embedment length 273
Figure 7.8 Von Mises stress contours for (a) R-G6L175, (b) R-G7L175, (c) R-C6L175, and (d) R-C7L125 with 175 mm embedment length 274
Figure 7.9 Von Mises stress contours for (a) F-G6L175, (b) F-G7L175, (c) F-C6L175, and (d) F-C7L125 with 175 mm embedment length

Figure 7.10 Von Mises stress contours for (a) K-WL75, (b) K-WL125, and (c) K-WL175
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon Fiber Reinforced Polymer</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Development Board</td>
</tr>
<tr>
<td>DCDT</td>
<td>Direct Current Differential Transformers</td>
</tr>
<tr>
<td>DTP-BT</td>
<td>Direct Tension Pullout Bond Test</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FRP</td>
<td>Fiber Reinforced Polymer</td>
</tr>
<tr>
<td>GFRP</td>
<td>Glass Fiber Reinforced Polymer</td>
</tr>
<tr>
<td>IBS</td>
<td>Industrialized Building Systems</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformers</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>NN</td>
<td>Neural Network</td>
</tr>
<tr>
<td>R</td>
<td>Regression value</td>
</tr>
<tr>
<td>WS</td>
<td>Welded and Bolted Specimens</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\mu_d \) - Ductility ratio
\(\mu_s \) - Strength ratio
\(\mu_y \) - Yield ratio
\(A_b \) - Steel bar cross sectional area
\(A_{b,p} \) - Contact surface area of the bar
\(A_{sl} \) - Contact surface area of the sleeve
\(A_{sl,c} \) - Contact surface area of cylindrical sleeve
\(A_{sl,t} \) - Contact surface area of tapered head sleeve
\(A_{r,sl} \) - Effective transverse cross sectional area of the sleeve
\(c \) - Constant
\(d_i \) - Inner diameter at mid-length of sleeve
\(d_o \) - Inner diameter at the end of sleeve
\(E \) - Modulus of elasticity
\(E_g \) - Modulus of elasticity of grout
\(E_{sl} \) - Modulus of elasticity of the sleeve
\(f_{bt} \) - Bond stress
\(f'_c \) - Concrete compressive strength
\(f'_g \) - Grout compressive strength
\(f_n \) - Lateral confining pressure
\(F_n \) - Confinement force
\(F_{n,c} \) - Confinement force generated in cylindrical sleeve
\(F_{n,t} \) - Confinement force generated in tapered head sleeve
\(k_1 \) - Pre-yield stiffness
\(k_2 \) - Post-yield stiffness
\(l_e \) - Embedded length
\(l_{opt,cr} \) - Minimum embedded length (ultimate method)
\(l_{opt,gr} \) - Minimum embedded length (graphical method)
\(l_s \) - Sleeve length
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>Slope of the regression line</td>
</tr>
<tr>
<td>(P)</td>
<td>Load</td>
</tr>
<tr>
<td>(P_{cr})</td>
<td>Minimum requirement for the tensile strength</td>
</tr>
<tr>
<td>(P_{exp})</td>
<td>Load recorded in experiment</td>
</tr>
<tr>
<td>(P_{NN})</td>
<td>Load predicted by neural network</td>
</tr>
<tr>
<td>(P_{T,sl})</td>
<td>Transverse tensile force</td>
</tr>
<tr>
<td>(P_u)</td>
<td>Ultimate tensile strength</td>
</tr>
<tr>
<td>(P_{u,exp})</td>
<td>Experimental ultimate tensile strengths</td>
</tr>
<tr>
<td>(P_{u,FE})</td>
<td>Fe analysis tensile strength</td>
</tr>
<tr>
<td>(P_{u,Pre})</td>
<td>Ultimate tensile strengths predicted by proposed equations</td>
</tr>
<tr>
<td>(P_{u,NN})</td>
<td>Ultimate tensile strengths predicted by neural network</td>
</tr>
<tr>
<td>(P_y)</td>
<td>Yield point</td>
</tr>
<tr>
<td>(S_l)</td>
<td>Slippage corresponding to the bond stress</td>
</tr>
<tr>
<td>(t)</td>
<td>Thickness</td>
</tr>
<tr>
<td>(t_{frp})</td>
<td>Thickness of fiber reinforced polymer</td>
</tr>
<tr>
<td>(t_{sl})</td>
<td>Sleeve thickness</td>
</tr>
<tr>
<td>(T)</td>
<td>Bond strength</td>
</tr>
<tr>
<td>(T_c)</td>
<td>Bond strength of cylindrical specimen</td>
</tr>
<tr>
<td>(T_s)</td>
<td>Tangential force</td>
</tr>
<tr>
<td>(T_t)</td>
<td>Bond strength of tapered specimen</td>
</tr>
<tr>
<td>(U)</td>
<td>Bond strength of concrete</td>
</tr>
<tr>
<td>(x)</td>
<td>Normalized data</td>
</tr>
<tr>
<td>(X_{max})</td>
<td>Minimum value of variable</td>
</tr>
<tr>
<td>(X_{min})</td>
<td>Maximum value of variable</td>
</tr>
<tr>
<td>(\Delta l)</td>
<td>Small longitudinal length</td>
</tr>
<tr>
<td>(\Delta u)</td>
<td>Ultimate displacement</td>
</tr>
<tr>
<td>(\Delta u,Exp)</td>
<td>Experimental ultimate displacement</td>
</tr>
<tr>
<td>(\Delta u,FE)</td>
<td>FE Analysis ultimate displacement</td>
</tr>
<tr>
<td>(\Delta y)</td>
<td>Displacement at yield</td>
</tr>
<tr>
<td>(\varepsilon_s)</td>
<td>Tangential strain</td>
</tr>
<tr>
<td>(\varepsilon_{T,sl})</td>
<td>Tensile strain of sleeve</td>
</tr>
<tr>
<td>(\vartheta)</td>
<td>Poisson’s ratio</td>
</tr>
</tbody>
</table>
\(\vartheta_s \) - Poisson’s ratio of grout
\(\rho \) - Mass density
\(\sigma_n \) - Normal confinement stress
\(\sigma_{n,b,c} \) - Normal confinement stress of cylindrical sleeve
\(\sigma_{n,b,t} \) - Normal confinement stress of tapered sleeve
\(\sigma_{sy} \) - Yield stress
\(\sigma_{T,sl} \) - Transverse tensile stress of sleeve
\(\sigma_u \) - Ultimate tensile stress
\(\sigma_y \) - Specified yield strength
\(\tau \) - Bond stress
\(\tau_{cr} \) - Ultimate bond stress
\(\tau_{max} \) - Maximum bond strength
\(\tau_{u,Exp} \) - Experimental bond stress
\(\tau_{u,NN} \) - Bond stress predicted by neural networks
\(\varphi \) - Bar diameter
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Fabrication of the Grouted Splice Connections</td>
<td>300</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Failure Modes of the Grouted Splice Connections</td>
<td>322</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Load-Displacement Responses of FRP Grouted Splice Connections</td>
<td>330</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Transverse Tensile Strains of FRP Grouted Splice Connections</td>
<td>333</td>
</tr>
<tr>
<td>Appendix E</td>
<td>ANN Model of the Load-Displacement Behavior of FRP Grouted Splice Connections</td>
<td>341</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Numerous advantages of precast concrete systems made them a promising alternative choice to their conventional reinforced concrete counterparts in the construction industry. Precast concrete systems have the potential to increase the quality of building components by producing them under the controlled environment. Moreover, the precast systems can provide significant benefits for engineers, labors, and public by improving the quality, constructability, work zone safety and minimizing the environmental impacts, construction costs, and traffic disruptions. In this regard, the main objective of Construction Industry Development Board (CIDB) of Malaysia is to develop the capacity and capability of the construction industry through enhancing the quality and productivity by expanding the employment of precast concrete systems [1].

The chronology of the Industrialized Building Systems (IBS) in Malaysia goes back to 1960s. Sufficient exposure and incentives are pouring in to encourage industry players to make a paradigm move – from conventional to IBS construction. In this regard, about 22.7 acres of land in Jalan Pekeliling, Kuala Lumpur was dedicated to the first IBS project during the 1st and 2nd Malaysian Plan (1960–1965 and 1966–1970) to build quality and affordable houses in a shorter period of time. This project comprised of 7 blocks of 17 stories flat consisted of 3000 units of low-cost flat and 40 shops lot [2-4]. Due to the problems related with some of the foreign prefabricated systems in 1960s and 1970s, identifying newer, better, and innovative technologies which are suitable with Malaysian climate and social practices has been the main objective for the construction industry in Malaysia. To promote the IBS
usage in the industry, the IBS Strategic Plan was introduced in 1999 [2]. This was followed by developing IBS Roadmaps 2003-2011 and 2011-2015 to enhance the efficiency, quality, sustainability, competency and research and development programs. To increase the contribution of the IBS industry, the Malaysian government mandated that all public-sector projects must attain no less than 70% IBS-content under the Treasury Circular SPP 07/2008 [1].

In recent years, IBS precast components are used in construction projects to offer solutions to overcome the increasing demands for schools, hospitals, colleges, universities and private buildings. It was only possible through expanding knowledge through intensive research on local IBS technologies.

The connections are the most important components of precast concrete systems, as the overall integrity of the precast structure is largely governed by its connections. Connections alone can dictate the type of precast frame, the limitations of that frame, and the erection progress which emphasizes the importance of connections in precast concrete systems [5,6]. Hence, addressing the effectiveness of precast connections in transferring the forces between individual building components (is a research area that) needs further investigations. In this regard, current research is carried out to develop and study grouted splice connections to join precast concrete components.

There are different ways to have a satisfactory connection, such as welding, bolting, or grouting. The used method should be simple and applicable on site. Grouted splice connections can be completed much faster with significant reduction in the required embedded length of the reinforcement bars compared to conventional methods such as cast-in-place concrete [4]. This fact makes the splice connections a good choice for heavily reinforced structures.

There are two different types of connections: conventional method or lapping reinforcement bar, and mechanical connections. Grout filled splices connection is a form of mechanical connection which have been used to connect precast members
and they have been used to overcome the issues related to the long embedded length of lapping systems. During the fabrication, sleeves are pre-embedded in one end of the precast member and projecting steel bars are inserted into the sleeves to fit two sides of the members. Then, the space between the bars and sleeves is filled with non-shrink grout (see Figure 1.1). By having a good installation of the connection, the sleeves can withstand applied forces and they can develop the full strength of the bars to have a monolithic behavior as cast in situ concrete.

Several types mechanical connections are available on the market such as Lenton Interlok® [7, 8], NMB Splice-Sleeve® [9], Quick-Wedge®, BarSplice Products Inc, etc. The main problem related to such proprietary products is that little information has been published about the mechanism of the connection system. Moreover, they could only be purchased from certain companies which belong to foreign countries, therefore developing a new type of sleeve connection which could be cost effective and simple to produce is necessary for countries like Malaysia.

The effectiveness of the splice connection largely depends on the generated bond between reinforcement bar and the surrounding grout. Hence, a satisfactory splice connection should be able to provide structural continuity by providing
adequate bond strength with short development length. In this regard, six types of splice connections were introduced in this research to study the factors that might affect their behaviors and feasibility under incremental tensile load.

1.2 Problem Statement

Components in precast concrete systems are prefabricated, so lapping length may not be appropriate for precast concrete systems as the lapping method requires significant lapping length. Although the general structural behavior of precast components is similar to members that are monolithically cast in place, the major difference is the nature of connections. Hence, details of precast concrete connections are especially important to ensure equivalent behavior of a conventionally designed, cast-in-place, monolithic concrete structure [10]. While the continuity in cast-in-place systems is achieved by providing lapped reinforcement bars to have a monolithic system, it can be achieved by utilizing grouted splice connections with shorter anchorage lengths in precast systems.

However, limited information is provided by design codes as practical solutions for designing a splice connection which might be due to the proprietary and confidential nature of these products. On the other hand, available studies about the performance of the spliced connections are restricted to the small scale experimental studies with limited design parameters which might not be suitable to predict the acceptability of the connections [11-13].

Furthermore, the majority of the published articles are mainly focused on grouted splices produced from steel pipes. Steel pipes cannot generate required interlocking mechanism between their inner surface and the grout. Hence, several methods have been used by previous researches to provide adequate interlocking mechanism. Among the proposed methods, welding gained more attention due to its advantage over other methods like threading. This might be due to this fact that compared to best-quality thread, providing interlocking mechanism by welding is
The issues related to the research are:

1. The embedded lengths used in precast grouted splice connections are much shorter than the embedded lengths offered by design standards. Hence, ensuring the ability of the grouted splice to develop the full strength capacity and maintaining the structural continuity of the spliced bars is a critical issue in practice. In this regard, further research is required to study the acceptability of the short embedded lengths and subsequently identifying the minimum bar embedded lengths of the grouted splices able of developing full tensile strengths of the spliced bars.

2. During the design process, if the ultimate strength of the grouted splice connection is not determined precisely, it may lead to catastrophic failures in the structure. In order to obtain reliable predictions of the ultimate strength of the grouted splices with different design parameters, analytical research are conducted and equations are derived by analyzing the experimental results of the current study.

3. In practice, predicting the behavior of the grouted splice is the key issue to assure designers and contractors in using grouted splices. To do this, an extensive experimental and analytical research is carried out to justify the load responses of the grouted splices with different design parameters under incremental tensile load.

4. The majority of the published studies are limited to conventional steel products and they did not cover the practicality of the alternative materials and design parameters. Hence, further investigation is required to understand the effects of different combination of confining materials on the performance and behavior of the spliced connections.
1.3 Objectives

The specific objectives of the research are:

1. To study experimentally the behavior, performance, and satisfactory design parameters of the proposed grouted splice connections using FRP sheets as the confinement and subjected to incremental tensile load.
2. To develop empirical relationship of the behavior of the proposed grouted splices based on the experimental results.
3. To predict the behavior and performance of the proposed FRP grouted splice connections using Artificial Neural Network (ANN).
4. To investigate the behavior of the FRP grouted splice connection such as load-displacement, types of failure, and ultimate tensile strength using Finite Element Method (FEM).
5. To compare the results of the proposed empirical relationship, neural network model, and finite element method with the experimental results of the proposed FRP grouted splice connections.

1.4 Scopes of Research

The scope of the research program is limited to the following:

1. Steel reinforcement bars with diameter of 16 mm were used for all grouted splices.
2. The sleeve diameter of the proposed grouted splices ranging from 37 mm to 75 mm.
3. The embedded lengths of 75 mm, 125 mm, and 175 mm were considered for the proposed grouted splices.
4. One type of grout was used to prepare the proposed grouted splices.
5. Mild steel pipes, two types of aluminum tubes (rigid and flexible corrugated tubes), glass and carbon fiber reinforced polymers were used to prepare the proposed grouted splices.
6. Grouted splices were subjected to incremental tensile load and other load cases were not considered.
7. Artificial neural network and finite element methods were used to predict the behavior and performance of FRP grouted splice connections only.

1.5 Thesis Outline

The general aim of this thesis was to study the behavior of the grouted splice connections under incremental tensile load until failure. This thesis comprises of eight chapters covering three phases of this study.

A brief introduction of the grouted splice connections, relative problem statement, the objectives and scopes of this study are presented in Chapter 1.

Chapter 2 presents the review of the available literature and the present state of knowledge regarding grouted connections and proposed methods for studying and analyzing the behavior of these type of connections.

Chapter 3 describes the experimental program, including the details of test specimens, different variables considered in the proposed connections, material specifications, instrumentations, test setup and procedures.

Chapter 4 covers Phase 1 of this study and presents the results and discusses the effects of various designs on the responses of the grouted splice connections when subjected to incremental tensile load. Moreover, an empirical relationship was developed in this phase of research to verify and predict the ultimate strength as well as the load-displacement responses of the grouted splices under incremental tensile load.
REFERENCES

37. ACI Committee, A., Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03). American Concrete Institute, Detroit, Michigan, US, 2003: p. 49.
39. Hungspreug, S., Local Bond Between A Steel Bar And Concrete Under High Intensity Cyclic Load. 1981.
46. Loo, G.K., Parametric study of grout-filled splice sleeve integrated with flexible aluminium tube for precast concrete connection. 2009, Universiti Teknologi Malaysia.
47. Lim, C.T., The Effects of Pitch Distance of Steel Spiral Reinforcement to the Performance of Grouted Sleeve Connector Under Direct Tensile Load. 2010, Universiti Teknologi Malaysia.

103. Lormanometee S. Bond strength of deformed reinforcing bar under lateral pressure. University of Texas at Austin; 1974.

106. Ling JH. Behavior of grouted splice connections in precast concrete wall subjected to tensile, shear and flexural loads. 2011, Universiti Teknologi Malaysia.

107. Lim CT. The effect of pitch distance of steel spiral reinforcement to the performance of grouted sleeve connector under direct tensile load. 2010, Universiti Teknologi Malaysia.

114. Qiong Y, Kun X, Zhiyuan X, Yongqing F, Xilin L. Seismic Behavior of Precast Shear Walls with Vertical Reinforcements Overlap Grouted in

120. ACI-318. Building code requirements for structural concrete and commentary. American Concrete Institute; 2002.

123. Quayyum, S., Bond behavior of fibre reinforced polymer (FRP) rebars in concrete. 2010, University of British Columbia.

141. Soudki, K. A. Behaviour of Horizontal Connections for Precast Concrete Load-bearing Shear Wall Panels Subjected to reversed Cyclic Deformations. PhD. University of Manitoba; 1994

295
148. ACI Committee. Standard tolerances for concrete construction and materials (ACI 117-90) and commentary (ACI 117R-90). American Concrete Institute.

176. Quevedo FP, Schmitz RJ, Morsch IB, Campos Filho A, BERNAUD D. Customization of a software of finite elements to analysis of concrete

