PHOTODYNAMIC EFFECTIVENESS OF LASER DIODE COMBINED WITH OZONE TO REDUCE STAPHYLOCOCCUS AUREUS BIOFILM WITH EXOGENOUS CHLOROPHYLL OF DRACAENA ANGUSTIFOLIA LEAVES

Astuti S.D.1, Drantantiyas N.D.G.2, Putra A.P.1, Puspita P.S.3, Syahrom A.4, Suhariningsih S.1
1Airlangga University, Surabaya, Indonesia
2Sumatera Institute of Technology, Bandar Lampung, Indonesia
3Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
4Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract
Photodynamic inactivation is an effective treatment that uses light irradiation, photosensitizer and oxygen. The aim of this study was to determine photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm using exogenous chlorophyll (Chlo). The chlorophyll was extracted from leaf of Dracaena angustifolia. To determine the antibacterial effect of S. aureus biofilm treatments, samples were separated into Chlo, Laser, Chlo+Laser, Ozone, Ozone+Laser, Chlo+Ozone+Laser categories. The data were analyzed using ANOVA test. The result of this study showed that Chlo+Ozone+Laser combine treatment at 20 s exposure of ozone with 4 min of irradiation time lead to 80.26 % reduction of biofilm activity, which was the highest efficacy of all the treatment groups. The combination of laser, chlorophyll and lower ozone concentration increases the effectiveness of photodynamic inactivation.

Keywords: antibacterial photodynamic therapy, laser irradiation, ozone, chlorophyll, staphylococcus aureus, biofilm.

Contacts: Astuti S.D., email: suryanidyah@fst.unair.ac.id
Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves

Ключевые слова: антибактериальная фотодинамическая терапия, лазерное облучение, озон, хлорофилл, золотистый стафилококк, биопленка.

Контакты: Astuti S.D., email: suryanidyah@fst.unair.ac.id

Introduction
Biofilms are colonies of bacteria that produce a protective matrix called extracellular polymeric substance (EPS) and have higher virulence, resistance, and pathogenic properties [1–2]. Almost all antibiotics fail to control the biofilms [3–4]. In addition, there is a possibility of biofilm having the ability to reduce production of hydrogen peroxide (H₂O₂) which is a precursor of toxic molecules when DNA–protein synthesis changes [5]. Photodinamic inactivation (PDI) was investigated as an alternative method to reduce biofilms [6].

PDI is a therapy method using light, photosensitizer and oxygen. The PDI mechanism starts from the absorption of light the wavelength of which corresponds to the absorbance of photosensitizer. It can produce reactive oxygen species (ROS) through type I and II photochemical processes [7]. A previous report related of PDI using silver nanoparticles as photosensitizer and laser diode with an output of 450.00 ± 22.34 nm and 53.16 ± 0.01 mW. This combination could decrease the surviving biofilm compared to the laser diode itself by 64.48 ± 0.07% against 7.07 ± 0.23% at 6.13 ± 0.002 J/cm², respectively [8].

Street et al. reported that biofilm reduction depends on the energy dose of light absorbed by the photosensitizer [9]. One of such photosensitizers is chlorophyll. The advantage of using chlorophyll in PDT is that it is cheap, easy to obtain and has short incubation time [10]. Chlorophyll sensitizers are currently used in targeting cancer cells, microbes and infection [11–13].

The amount of ROS production could be increased by the presence of H₂O₂ at the target location during the photochemical process with photosensitizer or ozone delivery. Currently, the amount of ozone needed for treatment is still unclear because each tissue structure has specific properties such as periodontitis in dermatology [14]. Hegge et al. reported that the combination of ozone and PDI provides a high efficacy depending on the ozone concentration [15]. This study aimed to determine photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm using exogenous chlorophyll. The chlorophyll was extracted from Dracaena angustifolia leaves.

Materials and Methods

Biofilm and Crystal Violet Assay
The bacterial strain, S. aureus ATCC 25923 was inoculated from Tryptone Soy Agar (Oxoid, UK) and taken on Tryptone Soy Broth sterile (Oxoid, UK). The culture of bacteria were incubated at 37°C until bacterial colonies reached ~10⁸ CFU/mL or 1.0 McFarland Standard. 100µL of bacteria culture was placed on 96-well microplates and 20 µL of 2% sucrose (w/v) were added. The samples were shaken at 36 rpm for 4 hours and incubated for 48 hours.

Biofilms were grown on well plate and rinses with Phosphate Buffered Saline (PBS) (pH 7.0) three times to remove individual cells. 100µL of 1% crystal violet were added to the sample and incubated with for 30 minutes. The samples were rinsed and dried for 3 hours. 50 µL 33% GAA (w/v) were added to the samples; the Optical Density (OD) value was measured at 595 nm.

Chlorophyll Extraction
The Chlorophyll (Chlo) was extracted from D. angustifolia leaves. 30 g of fresh leaves were added to 150 mL of 96% acetone and mashed into a pulp. The slice of leaves was filtered, purified, homogenized and precipitated, then put into the freezer at 20°C for 24 hours then filtered until it became a yellowish sediment. The stored filtrate was evaporated at 40°C. 60 g of silica gel was added to the filtrate. 8 g of silica gel and 16 ml of petroleum ether (PE) was then added and stirred homogeneously for 5 minutes and then let to rest for 2 hours. The chlorophyll extract was dissolved in diethyl ether, then 5 g of silica gel was added and dried until a green crystal-like powder was formed. The dry chlorophyll extract was added to petroleum ether until it produced yellow filtrate. Finally, 96% acetone was added into the mixture until a clear silica gel color was produced. To analyze the characterization of chlorophyll, a thin layer chromatography and UV-Vis spectrophotometry (Bio-Rad) were used [15, 16].

Light Sources Apparatus for light irradiation
Fig. 1a shows an apparatus set-up of light and ozone source and Fig. 1b – a microcontroller block diagram.
Astuti S.D., Drantantiyas N.D.G., Puspita P.S., Syahrom A., Suhartiningsih S.
Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves

Fig. 1. Apparatus set-up of light and ozone source (a) and microcontroller block diagram (b)
Рис. 1. Схема источника света и озона (a) и блоковая диаграмма микроконтроллера (b)
The apparatus consists of a controller and laser module. The laser diode was previously characterized as having $\lambda = 399.81 \pm 15.1 \text{ nm}$ and $P_{\text{out}} = 30.43 \text{ mW}$. The control box consists of microcontroller and LCD for setting the constant output intensity and time duration of the laser and controlling the position of the sample holder. The laser module consists of laser diode and sample holders. All parameters were controlled as shown in Fig. 1b. The position of laser diode was controlled according of 96-well microplate position. The experimental treatment was performed in the dark room at ~27˚C.

Ozone Sources

According to the manufacturer, the ozone source has the output of 400 mg/hours. The time duration of ozone output was controlled and displayed on the LCD. The ozonising probe was aimed directly at the sample. The measurement of O_3 molecule concentration added on each time exposure was carried out using the iodometric titration method.

Experimental Design

Treatment were divided into the following groups: Chlo, Laser, Chlo+Laser, Ozone, Ozone+Laser, Chlo+Ozone+Laser, as shown in Table 1. The concentration of the chlorophyll (1.6 ppm) was based on its toxicity level. According to the described experimental groups, 0.1 ml of the $S. aureus$ suspension was added to each well of sterile 96-well flat-bottom microtiter plates with lids. After the biofilm grew, 20 μl of the chlorophyll was added to the samples, which were then exposed to ozone and irradiated by laser diode at varying exposure time. Irradiation was done at a distance of 1 cm apart in a completely dark room. The growth of bacteria in the culture was monitored by measuring OD at 595 nm.

Statistical Analysis

The data measured in OD was converted to log CFU/mL by using Mc. Farland standard diagram with an equation of $(\log \text{ CFU/ml}) = 3.771+12.374 \times \text{ (OD)}$. The biofilm reduction was measured using equation 1 [12].

$$\% \text{Biofilm reduction} = \left(\frac{\sum \text{control} - \sum \text{treatment}}{\sum \text{control}} \right) \times 100\% \ (1)$$

For each treatment, the biofilm reduction percentage was calculated based on the control group with the untreated biofilm of $S. aureus$. The results of biofilm reduction were analyzed statistically by ANOVA test with a significance value of $p = 0.05$ using IBM SPSS Statistics Version 21.

Results

Characterization of Chlorophyll sensitizer

The result of pigment compounds of $D. angustifolia$ leaves using thin layer chromatography was shown in Table 2. The Retention factor (R_f) is useful for finding out pigment compound during separation of pigment. The best ratio of the solvent system to get a form of pigments (without beta-carotene) on $D. angustifolia$ leaves was petroleum ether and 96% acetone (8:2), respectively. The R_f has a valid value ranging from 0.2 to 1 which shows molecular polarity. Pigments of Chlorophyll-a obtained from $D. angustifolia$ leaves extract showed 0.24 R_f value thus had low polarity.
Based on Fig. 2, three Gaussian-like peaks with wavelengths of 414 nm, 458 nm, and 670 nm were obtained from the absorption spectrum of the *D. angustifolia* leaves extract. The maximum absorption is at 414 nm with FWHM of 40.40 ± 5.27 nm. This result would be used to determine the light source.

Efficacy of Treatment

The experimental results of the laser group are shown in Fig. 3. The comparison between the control group and Chlo group had no significant difference. The Laser group at 2 min of irradiation time showed 13.06 log CFU/ml or 57.19% biofilm reduction while the Chlo+Laser group at 3 min showed about 12.30 log CFU/ml or 59.69% biofilm reduction. However, the statistical analysis also showed there was no significant difference between both irradiation times indicated by the significance value of p > 0.05.

Treatment with the Ozone+Laser group (Fig. 4) showed that ozone exposure provides higher biofilm reduction efficacy within 40 s of exposure time. If laser irradiation was applied, they show the same pattern for each time of irradiation. The ozone group compared with the Ozone+Laser group at 40 s ozone exposure had significant difference with 20 and 60 s. 40 s of ozone treatment and 4 minutes of laser exposure produced around 11.98 log CFU/mL or 60.75% biofilm reduction.

The result of the Ozone treatment combined with Laser and chlorophyll was shown in Fig. 5. Chlo+Ozone group had no significant difference at any exposure time. The Ozone and Chlo+Ozone treatment groups also had no significant difference. The Chlo+Ozone+Laser group at 20 s exposure to ozone with 4 min of irradiation time gave 6.02 log CFU/mL or 80.26% biofilm reduction. That was the highest biofilm reduction efficacy of all treatment groups.

Discussions

In photosynthesis, chlorophyll is an important pigment. Chlorophyll-a directly harvests light and transfers energy to reaction center on the photosynthetic system. The solvent system of chlorophyll extraction is an important factor in obtaining the separated fraction of pigment group. This study used petroleum ether (PE) and 96% acetone as the solvent system for chlorophyll extraction [17]. Retention factor value ranged from 0.2

Table 2

<table>
<thead>
<tr>
<th>Fraction (color)</th>
<th>Retention factor (R<sub>f</sub>)</th>
<th>Pigments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>1</td>
<td>Beta-carotene</td>
</tr>
<tr>
<td>Gray</td>
<td>0.6039</td>
<td>Pheophytin a</td>
</tr>
<tr>
<td>Yellow brown</td>
<td>0.4950</td>
<td>Pheophytin b</td>
</tr>
<tr>
<td>Blue green</td>
<td>0.2476</td>
<td>Chlorophyll a</td>
</tr>
<tr>
<td>Yellow green</td>
<td>0.3125</td>
<td>Chlorophyll b</td>
</tr>
</tbody>
</table>

* Petroleum ether

Fig. 2. The absorption spectrum of the *Dracaena angustifolia* leaves extract

Рис. 2. Спектр поглощения экстракта листьев *Dracaena angustifolia*
PE and acetone (8:2) solvent had Rf of chlorophyll-a 0.25, but these contained beta-carotene pigment or carotenoid derivatives. The pigment acts as a protector against damage caused by ROS formation so that chlorophyll extraction had to be made without beta-carotene pigment. The absorbance spectrum of chlorophyll always has three peaks [18]. Chlorophyll extract had an absorption maximum at 414 nm, well correlated with peak wavelength of light source at $\lambda = 399.81 \pm 15.1$ nm.

The interaction of light and photosensitizer can produce toxic molecules. The photosensitizer in the body has an absorption spectrum that could be elucidated through an optical window that has optical absorption and scattering properties [19–20]. One of the endogenous photosensitizers is porphyrin which has various types and absorbance spectra [21]. In previous study, the porphyrin derivatives of S. aureus bacteria have a wide peak absorption spectrum and maximum wavelength in blue region [13, 22]. The other study resulted in the PDT provide an increase in biofilm reduction with the addition of chlorophyll. The dose of light exposure, certain photosensitizer and oxygen play an important role in the success of the PDI [9, 23].

The combination of 3 treatments with high exposure to ozone should lead to reduction in survival. However, we finally realized that higher ozone concentration would increase generation of H_2O_2, whereas an organism (including animal, plant, and microbe) contains a protein that degrades H_2O_2 to oxygen and water. Based on the reaction (Table 3), hydrogen peroxide can bind with other hydrogen peroxide and form non-toxic molecules. Mishra explains that some hydrogen peroxide changes into non-toxic molecules before reaching the cell [24]. So, the point to increasing biofilm reduction is in the density of laser diode, chlorophyll and lower ozone concentrations.

Based on Table 3, the mechanism of Chlo+Laser group could generate of ROS (type II) and free radicals (type I). Photochemical type I reaction occurs when radical anions or cations are formed due to the transfer of electrons (or protons) to oxygen molecules and produce ROS because they easily react with the molecular oxygen. Photochemical type II reaction occurs when energy is transferred to molecular oxygen to form singlet oxygen [19]. The dominant process depends on the chemical structure and the behavior of photosensitizers.

Treatment with ozone at 40 s exposure time caused greater reduction of biofilm because H_2O_2 molecules is an oxidant molecule that strengthens immunity by generating free radicals. The generation of free radicals obtained from the oxidative process of electron transfer of H_2O_2 through Fenton reaction. Ozone does not penetrate into the tissues but could spread to the cytoplasm [14].

Bocci said that ozone can react and polyunsaturated fatty acids (PUFA), antioxidants, thiol (-SH) compounds,
Table 3
The mechanisms PDI
Таблица 3
Механизмы фотодинамической инактивации

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Фотодинамические реакции</th>
<th>Ref.</th>
<th>Ссылка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone</td>
<td>O3 + H2O → R-CH=O + R'-CH=O + H2O2</td>
<td>[14]</td>
<td></td>
</tr>
<tr>
<td>Photophysics</td>
<td>PS + hν → 1PS*</td>
<td>[25]</td>
<td></td>
</tr>
<tr>
<td>Photochemical Type I</td>
<td>1PS* → 3PS*</td>
<td>[19]</td>
<td></td>
</tr>
<tr>
<td>Photochemical Type II</td>
<td>3PS* + 3O2 → PS + O3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation of ozone</td>
<td>H2O2 + O3 → O2 + H2O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catalase</td>
<td>H2O2 → O2 + 2H2O</td>
<td>[24]</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. The mechanisms of PDI treatment: (a) Ozone produces H2O2 in the biofilm surrounding that diffuses into the cytoplasm; (c) Samples with chlorophyll separated into 2 treatments; (d) Ozone produces a toxic molecule (H2O2); (e) and (g) Laser treatment could destroy EPS and increase the amount of toxic molecules through photochemical reaction. Note: IC: internal conversion, ISC: intersystem crossing, Sn: singlet states, Tn: triplet states, ET: energy transfer; (b), (f), (h) the toxic molecule causes oxidative stress in biofilm

Рис. 6. Механизмы фотодинамической инактивации: (a) Озон производит H2O2 в окружении биопленки, который диффундирует в цитоплазму; (c) Образцы с хлорофиллом разделены на 2 типа воздействия; (d) Озон производит токсичную молекулу (H2O2); (e) и (g) лазерное воздействие может уничтожить внеклеточный матрикс (EPS) и привести к росту количества токсичных молекул за счет фотодинамической реакции. Примечание: IC: внутренняя конверсия, ISC: межсистемный переход, Sn: синглетные состояния, Tn: триплетные состояния, ET: перенос энергии; (b), (f), (h) токсичная молекула вызывает окислительный стресс в биопленке
Fig. 7. Microscopic image of Staphylococcus aureus cells treated with laser, chlorophyll and ozone (×100000 magnification). (a) Normal cell (no treatment), (b) ROS reactions (including singlet oxygen, hydrogen peroxide, and superoxide anion radical) with cell membrane can cause extreme damage, (c) Damage to cell membranes causes the cytoplasm and cell organelles to become partly exposed and react directly with toxic molecules, (d) Cell organelles are directly exposed due to overall loss of the cell membrane.

Glutathione (GSH) and albumin. Inactivation mechanisms occur when some nanoparticles diffuse into biofilm, bind to thiol (–SH) protein species because of high affinity and are affected by denaturation. The enzymes, carbohydrates, DNA and RNA could be affected depending on the ozone dose [14].

In comparison with ozone, the Ozone+Chlo group was not significantly different. There are no interactions between ozone and chlorophyll. Chlo+Ozone+Laser treatment gave higher biofilm reduction efficacy in contrast with ozone group or Ozone+Chlo group. It is fascinating to find out that particular treatment of chlorophyll and ozone concentration could enhance efficacy on PDI.

The mechanism of Chlo+Ozone+Laser group generates more toxic compounds to induce cellular damage. Onyango showed the reaction of that component could form toxic compound and generate ozone. Furthermore, the cytotoxic reactions occur continuously in this treatment. Therefore, we need to control the ozone dose for controlling the cytotoxic reaction [27]. Chlo absorbs the energy of laser, causing chlorophyll to be excited. Furthermore, photochemical type II reactions occur, in the
form of energy transfer from Chlo excited triplets to triplet oxygen. It is acknowledged that because of interaction between photosensitizer and light (Fig. 6), the superoxide anion (\(\cdot O_2^- \)) and singlet oxygen (\(\cdot O_2 \)) are formed. Each chlorophyll molecule produces approximately \(10^7 \)–\(10^9 \) singlet oxygen molecules before degrading due to photo bleaching or other processes [28]. The production of excess ROS can eliminate biofilms as protectors and cause oxidative stress of bacteria in biofilms.

Based on Fig. 7, the mechanism of cell destruction are due to generation of ROS including singlet oxygen, hydrogen peroxide, and superoxide anion radical. The normal cell of \textit{Staphylococcus aureus} is a coccus and has slippery surface (Fig. 7a). After treatment, the normal cell has various damage starting from cell membrane. It causes the cytoplasm and cell organelles to react directly with toxic molecules. Grisham used the fluorescent method to detect \(\text{H}_2\text{O}_2 \) formation in the nucleus, mitochondria, endoplasmic reticulum and plasma membrane [29].

Conclusion

Combination of Chlo+Ozone+Laser treatment with high ozone exposure reduces biofilms by lesser amount. In this study, 3 treatment combinations at 20 s exposure to ozone showed increased biofilm reduction on average. Therefore, it is recommended to use a combination of laser, chlorophyll and lower ozone concentrations to increase the effectiveness of photodynamic inactivation.

We would like to express our gratitude to Directorate General Higher Education (DGHE) of Indonesia for financial support in this research with number 43 / E / KPT / 2017.
with exogenous chlorophyll of Dracaena angustifolia leaves

Astuti S.D., Drantantiyas N.D.G., Putra A.P., Puspita P.S., Syahrom A., Suhariningsih S.
Photodynamic effectiveness of laser diode combined with ozone to reduce Staphylococcus aureus biofilm with exogenous chlorophyll of Dracaena angustifolia leaves