Universiti Teknologi Malaysia Institutional Repository

Enhancement of anti‐fouling properties during the treatment of paper mill effluent using functionalized zeolite and activated carbon nanomaterials based ultrafiltration

Saranya, Rameshkumar and Arthanareeswaran, Gangasalam and Ismail, Ahmad Fauzi (2019) Enhancement of anti‐fouling properties during the treatment of paper mill effluent using functionalized zeolite and activated carbon nanomaterials based ultrafiltration. Journal of Chemical Technology and Biotechnology, 94 (9). pp. 2805-2815. ISSN 0268-2575

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1002/jctb.6020

Abstract

BACKGROUND: Treatment of paper mill effluent is crucial owing to its high organic constituents which necessitate the use of efficient membranes having greater anti-fouling ability. In this study, functionalized zeolite and activated carbon incorporated polyethersulfone (PES) membranes were developed to maximize the fouling resistance and rejection efficiency thereby to achieve greater reduction levels of chemical oxygen demand (COD), biological oxygen demand (BOD) and total dissolved solids (TDS) in the effluent. RESULTS: The synthesized inorganic modifiers such as functionalized copper (Cu)-zeolite, iron (Fe)-zeolite and calcium alginate functionalized activated carbon were incorporated into PES in distinct wt% of 0.25, 0.5, 0.75 and 1. The high pure water flux of 38.9 L m−2 h−1 was observed with 0.25 wt% of Cu-zeolite when compared to 24.3 L m−2 h−1 of virgin PES. The addition of 0.5 wt% of functionalized activated carbon resulted in reduction levels of about 90.2%, 92% and 80% of COD, BOD and TDS respectively. CONCLUSIONS: Facile functionalization of zeolite and activated carbon using metal salts and calcium alginate was achieved. Functionalized Cu-zeolite imparted increased hydrophilicity, anti-fouling property and increased pore size compared to that of Fe-zeolite and functionalized activated carbon.

Item Type:Article
Uncontrolled Keywords:fouling, functionalized zeolite
Subjects:T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:87417
Deposited By: Widya Wahid
Deposited On:08 Nov 2020 04:04
Last Modified:08 Nov 2020 04:04

Repository Staff Only: item control page