INFLOW CONTROL DEVICE IN OPENHOLE HORIZONTAL WELL

NURATHIRAH BINTI HASBULLAH

A project report submitted in partial fulfilment of the requirements for the award of the degree of
Master of Petroleum Engineering

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

JUNE 2018
“My dearest parents, husband, children, family, Assoc. Prof. Issham and friends.”

This is for all of you
ACKNOWLEDGMENT

In the name of Allah, the Most Gracious Most Merciful,

“All praise is due to Allah Who has guided us to this, and never could we have attained to Guidance, had it not been that Allah had guided us” – Al’A’raf verse 43.

First and foremost, praises and thanks to Allah, the Almighty, for His showers of blessings and mercies throughout my research work and enables to accomplish the study successfully.

I would like to express my deep and sincere gratitude and appreciation to my supervisor, Associate Professor Issham Ismail CEng CmarEng MIMarEST for the support, guidance and patience throughout the completion of the thesis.

I am extremely grateful to my parents for their love, prayers, caring and sacrifice for educating and preparing me for the future. My heartiest appreciation to my beloved husband, Hanif Nazir and my children, Harith Dad and Uwais Al-Qarni for the unconditional love, continuous support and encouragement that they have showered me during the completion of the study. You are the best gift from Allah in this world and hereafter.

Lastly, my profound appreciation to my extended families, colleague and friends, and all who have always give me the encouragement and inspiration during the ups and downs. May Allah shower you with His blessings and love.
ABSTRACT

An Inflow-control device (ICD) is a permanent completion hardware that is installed as part of well completions which often known as an equalizer or choking device. It offers numbers of unique benefits especially in the horizontal application, but it is not adjustable or non-retrievable hardware. Frictional pressure drops caused by fluid flow in horizontal section resulted in higher drawdown pressure at the heels section which causing an unbalance fluid distribution profile. Hence the main challenge of horizontal wells is an early water and/or gas breakthrough near the heel section which leads to a loss in production and reserves extraction, and ultimately, a decrease in profitability. Therefore, the purpose of this study is to develop the best ICD modelling design for a specific case study (Well ETA-06) and to investigate the effect of few important parameters towards the performance and functionality of the ICD along horizontal wellbore. ICD modelling was developed using NETool™ software for appropriate number of open-flow ports and the optimum length and/or numbers of ICDs required for evenly distributing the flow profile along the screen length in order to achieve the proactive functionality of the ICDs. A sensitivity study has been run towards the best resulted ICD parameters, namely (1) ICD size, (2) flow port size, (3) swell packer usability, (4) flow rate, (5) ICD roughness, and (6) discharge coefficient in simulating influx along the horizontal wellbore by coupling fluid flow through porous media and hydraulic flow into nozzle type of ICD completion architecture. In the homogeneous reservoir, the heel section tends to produce more oil compared to the toe section thereby will allow water or gas production in a brief period. On the other hand, the ICD has reduced or choked the fluid inflow at the higher permeability section and produces more at the low permeability area. In general, ICDs are unchangeable; once installed downhole in the well, the location of the device and the relationship between the rate and pressure drop are fixed. Consequently, the best design of a well completion and ICDs is extremely crucial in order to ensure the functionality and effectiveness of the ICDs in obtaining the optimum production at lesser water or gas production.
ABSTRAK

TABLE OF CONTENT

CHAPTER	**TITLE**	**PAGE**
ACKNOWLEDGMENT | iv |
ABSTRACT | v |
ABSTRAK | vi |
TABLE OF CONTENT | vii |
LIST OF TABLES | x |
LIST OF FIGURES | xii |
LIST OF ABBREVIATIONS | xvi |
LIST OF SYMBOLS | xviii |
LIST OF APPENDICES | xix |
1 | INTRODUCTION | 1
 1.1 | Background | 1
 1.2 | Problem Statement | 3
 1.3 | Hypotheses | 5
 1.4 | Objectives | 6
 1.5 | Scope of Study | 6
 1.6 | Significance of the Study | 7
 1.7 | Chapter Summary | 8
2 | LITERATURE REVIEW | 9
 2.1 | Overview of Horizontal Well | 9
 2.2 | Completion Technique for Horizontal Wells | 14
 2.3 | Hole Cleaning | 17
 2.4 | Type of Sand Control | 21
2.4.1 Gravel Pack 24
2.4.2 Chemical Consolidation 26
2.4.3 Frac and Pack 27
2.4.4 Expandable Sand Screen (ESS) 28
2.4.5 Stand-Alone-Screen (SAS) 29
2.5 Sand Control System Selection 30
2.6 Type and Sizing of Stand-Alone-Screen (SAS) 36
2.7 Downhole Flow Control 42
2.8 Inflow Control Device 43
 2.8.1 Channel-Type ICD 46
 2.8.2 Nozzle-Type ICD 47
 2.8.3 Orifice-Type ICD 47
2.9 NETools™ Software 47
2.10 Chapter Summary 49

3 METHODOLOGY 50
 3.1 Introduction 50
 3.2 Software Overview and Guideline 52
 3.3 Data Requirement and Input 65
 3.4 Well Model & Assumptions 65
 3.5 NETools™ Openhole Base Case 66
 3.6 NETools™ ICD Completion Configurations 68
 3.7 Sensitivity Analysis 69
 3.7.1 Swell Packer 71
 3.7.2 ICD Discharge Coefficient 71
 3.8 Chapter Summary 73

4 CASE STUDY 74
 4.1 Introduction 74
 4.2 Data Availability and Well Information 75
 4.3 NETools™ Openhole Base Case 79
 4.4 NETools™ ICD Case 83
 4.5 NETools™ ICD Case Comparison 93
 4.6 Sensitivity Study 97
4.6.1 Effect of ICD Size 97
4.6.2 Effect of Flow Port Size 98
4.6.3 Effect of Swell Packer Usability 99
4.6.4 Effect of Flow Rate 100
4.6.5 Effect of ICD Roughness 100
4.6.6 Effect of ICD Discharge Coefficient 101
4.7 Results Summary 104
4.8 Observations and Findings 105
4.9 Chapter Summary 107

5 CONCLUSIONS AND RECOMMENDATIONS 109
5.1 Conclusions 109
5.2 Recommendations 110

REFERENCES 112
Appendix A – C 119- 147
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Horizontal wells classifications (Sanapathi, 2010)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparable table for each type of stand-alone screens</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Applications and risk of the screen systems</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>ICD completion configuration options</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>Specifications the ICD (Weatherford, 2009a)</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>General well information: ETA-06</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>NETool case configurations</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>NETool™ openhole base case output summary</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Result summary at 3000 BPD of gross production rate</td>
<td>83</td>
</tr>
<tr>
<td>4.5</td>
<td>Result summary at 4000 BPD of gross production rate</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>Result summary at 5000 BPD of gross production rate</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Result comparison for ICD cases at 3000, 4000 and 5000 BPD production</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>Percentage change in production, water cut and PI oil with change in flow rate</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>Percentage change in production, water cut and PI oil with changes in ICD diameter</td>
<td>97</td>
</tr>
<tr>
<td>4.10</td>
<td>Percentage change in production, water cut and PI oil with changes in flow port sizing</td>
<td>98</td>
</tr>
<tr>
<td>4.11</td>
<td>Percentage change in production, water cut and PI oil with changes in swell packer usability</td>
<td>99</td>
</tr>
<tr>
<td>4.12</td>
<td>Percentage change in production, water cut and PI oil with changes in flow rate</td>
<td>100</td>
</tr>
</tbody>
</table>
4.13 Percentage change in production, water cut and PI oil with changes in ICD roughness 101
4.14 Percentage change in production, water cut and PI oil with changes in discharge coefficient 101
4.15 Result summary for ETA-06 105
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic schematic diagram of diagram of horizontal well (Carr et al., 2003)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Type of horizontal well configurations (Sanapathi, 2010)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparing completion in (a) homogeneous reservoir,</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Well schematic of an openhole horizontal completion (Reynolds, 2010)</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Well schematic of slotted liner horizontal completion (Reynolds, 2010)</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Wellbore diagrams: (a) a perforated completion, (b) a single completion inside perforated casing</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Movement of the drilling fluid in the hole cleaning process (Nelson, 2006)</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Type of sand control</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Typical schematic for openhole gravel pack (Matanovic et al., 2012)</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Typical schematic for gravel pack application in perforated casing (Matanovic et al., 2012)</td>
<td>25</td>
</tr>
<tr>
<td>2.11</td>
<td>Sequence of resin consolidation process (Matanovic et al., 2012)</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Expandable sand screen: unexpanded vs. expanded (Mohd Ismail and Geddes, 2013)</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Sand control, decision tree of Flow Chart 1 (Weatherford, 2009)</td>
<td>32</td>
</tr>
<tr>
<td>2.14</td>
<td>Sand control decision tree of Flow Chart 2 (Weatherford, 2009)</td>
<td>33</td>
</tr>
<tr>
<td>2.15</td>
<td>Sand control decision tree of Flow Chart 3 (Weatherford, 2009)</td>
<td>34</td>
</tr>
</tbody>
</table>
2.16 Sand control decision tree for Flow Chart 4 (Weatherford, 2009). 35
2.17 Type of stand-alone screen 36
2.18 Type of slot available 37
2.19 Example of wire-wrapped screen 37
2.20 Triangle shape of wire-wrapped screen 38
2.21 Construction of pre-packed screen 38
2.22 Diagram of premium screen 39
2.23 Typical well schematic for cased hole downhole flow control completions (Bellarby, 2009) 43
2.24 Oil flow path through the ICD (Aadnoy et al., 2009) 46
2.25 Network nodes in NETool™ software (Halliburton, 2009) 48
2.26 Averaging method between two adjacent nodes (Halliburton, 2009) 49
3.1 Overall project flow chart 51
3.2 Averaging method between two adjacent nodes (Halliburton, 2009) 53
3.3 Network nodes (Halliburton, 2009) 53
3.4 Well path in NETool™ 54
3.5 Global setting: Well type 55
3.6 Global setting: Boundary condition 56
3.7 Fluid properties 56
3.8 PVT table 57
3.9 Relative permeability table 57
3.10 Completion configuration 59
3.11 Reservoir pressure 59
3.12 Horizontal permeability and Kv/Kh ratio 60
3.13 Fluid mobility 61
3.14 Skin damage 61
3.15 Summary table of NETool™ result 62
3.16 ICD workflow model 63
3.17 NETool™ procedure flow chart 64
3.18 Reservoir Permeability curve for ETA-28 67
3.19 Oil and water saturation profile for ETA-28 67
3.20 Reservoir pressure for ETA-28 68
4.1 East Telulut A-06 Log Perm & Sw vs. horizontal depth plot
4.2 Oil relative permeability
4.3 3D-plan view of the reservoir section
4.4 Well trajectory across the reservoir horizontal section
4.5 Oil cumulative flowrate in tubing from toe to heel section for base case scenario
4.6 Water cumulative flowrate in tubing from toe to heel section for base case scenario
4.7 Oil influx profile for base case scenario
4.8 Water influx profile from reservoir to well for 3000, 4000 and 5000 BPD
4.9 Pressure drawdown for each flow rate for base case scenario
4.10 Oil and water cumulative flowrate in tubing for all cases at 3000 BPD
4.11 Oil and water cumulative flowrate in tubing for all cases at 4000 BPD
4.12 Oil and water cumulative flowrate in tubing for all cases at 5000 BPD
4.13 Oil and water influx profiles at 3000 BPD
4.14 Oil and water influx profiles at 4000 BPD
4.15 Oil and water influx profiles at 5000 BPD
4.16 Completion pressure drop at 3000 BPD
4.17 Completion pressure drop at 4000 BPD
4.18 Completion pressure drop at 5000 BPD
4.19 Oil cumulative flow rate for Case 7 at 3000, 4000 and 5000 BPD
4.20 Water cumulative flow rate for Case 7 at 3000, 4000 and 5000 BPD
4.21 Oil influx for Case 7 at 3000, 4000 and 5000 BPD
4.22 Water influx for Case 7 at 3000, 4000 and 5000 BPD
4.23 Pressure drop across completion for Case 7 at 3000, 4000 and 5000 BPD
4.24 Tornado chart for the sensitivity study
4.25 Summary of ICD completion design
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Valve open-close scenario (Nachiket and Dmitrii, 2017)</td>
<td>106</td>
</tr>
<tr>
<td>4.27</td>
<td>Proposed ER-ICD valve design (Nachiket and Dmitrii, 2017)</td>
<td>106</td>
</tr>
<tr>
<td>4.28</td>
<td>Proposed ER-ICD valve schematic diagram</td>
<td>107</td>
</tr>
<tr>
<td>4.29</td>
<td>Well schematic diagram for ETA-06</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMSL</td>
<td>Above Mean Sea Level</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>BC</td>
<td>Base Case</td>
</tr>
<tr>
<td>BFPD</td>
<td>Barrel Fluid Per Day</td>
</tr>
<tr>
<td>BHP</td>
<td>Bottom Hole Pressure</td>
</tr>
<tr>
<td>BOPD</td>
<td>Barrel Oil Per Day</td>
</tr>
<tr>
<td>BPD</td>
<td>Barrel Per Day</td>
</tr>
<tr>
<td>BWPD</td>
<td>Barrel Water Per Day</td>
</tr>
<tr>
<td>DIF</td>
<td>Drilling Fluid</td>
</tr>
<tr>
<td>EOR</td>
<td>Enhance Oil Recovery</td>
</tr>
<tr>
<td>ER-ICD</td>
<td>Electrical Resistivity Inflow Control Device</td>
</tr>
<tr>
<td>ESS</td>
<td>Expandable Sand Screen</td>
</tr>
<tr>
<td>FBP</td>
<td>Flowing Bottom Hole Pressure</td>
</tr>
<tr>
<td>FP</td>
<td>Frac Pack</td>
</tr>
<tr>
<td>GP</td>
<td>Gravel Pack</td>
</tr>
<tr>
<td>ICD</td>
<td>Inflow Control Device</td>
</tr>
<tr>
<td>ICV</td>
<td>Inflow Control Valves</td>
</tr>
<tr>
<td>ID</td>
<td>Internal Diameter</td>
</tr>
<tr>
<td>MD</td>
<td>Measured Depth</td>
</tr>
<tr>
<td>mD</td>
<td>miliDarcy</td>
</tr>
<tr>
<td>MSL</td>
<td>Mean Sea Level</td>
</tr>
<tr>
<td>NBA</td>
<td>Net Benefit Analysis</td>
</tr>
<tr>
<td>OBM</td>
<td>Oil Based Mud</td>
</tr>
<tr>
<td>OD</td>
<td>Outer Diameter</td>
</tr>
<tr>
<td>PI</td>
<td>Productivity Index</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>PO</td>
<td>Port Open</td>
</tr>
<tr>
<td>PMF</td>
<td>Porous Metal Fibre</td>
</tr>
<tr>
<td>PMM</td>
<td>Porous Metal Media</td>
</tr>
<tr>
<td>PPS</td>
<td>Pre-Packed Screen</td>
</tr>
<tr>
<td>PVT</td>
<td>Pressure Volume Temperature</td>
</tr>
<tr>
<td>RKB</td>
<td>Rotary Kelly Bushing</td>
</tr>
<tr>
<td>ROP</td>
<td>Rate of Penetration</td>
</tr>
<tr>
<td>SAS</td>
<td>Stand Alone Screen</td>
</tr>
<tr>
<td>SCON</td>
<td>Sand Consolidation</td>
</tr>
<tr>
<td>TVD</td>
<td>True Vertical Depth</td>
</tr>
<tr>
<td>TVDSS</td>
<td>True Vertical Depth Subsea</td>
</tr>
<tr>
<td>WBM</td>
<td>Water Based Mud</td>
</tr>
<tr>
<td>WWS</td>
<td>Wire Wrapped Screen</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\Delta P \) - Pressure drop across orifice
\(\rho \) - Average fluid density
\(v \) - Fluid velocity through orifice
\(Q \) - Fluid flow rate through orifice
\(A \) - Area of orifice
\(D \) - Diameter of orifice
\(C \) - Flow coefficient
\(C_d \) - Discharge coefficient
\(K \) - Pressure drop coefficient
\(d_{\text{effective}} \) - Effective diameter
\(m \) - Meter
\(Q_o \) - Oil flow rate
\(Q_w \) - Water flow rate
\(\Delta \text{PI} \) - Different in productivity index
\(\Delta \text{WC} \) - Different in water cut
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Details design for ICD case scenario</td>
<td>119</td>
</tr>
<tr>
<td>B</td>
<td>Water saturation and permeability readings for ETA-06</td>
<td>126</td>
</tr>
<tr>
<td>C</td>
<td>Discharge coefficient, Cd calculation for 3000, 4000 and 5000 STB/day.</td>
<td>144</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Completion is part of well construction. It is defined as a series of activities or processes of making a hole ready for production or injection in a controlled manner (Buzarde et al., 1972; Ismail, 2000). Completion type can be divided into two categories which are upper and lower completion (Ismail, 2003). Part of the completion below the production packer is called as lower completion which can be subcategorized into few types. One of them is the sand screen or screen liner, including wire wrapped sand screens, slotted liners, pre-packed screens, and premium screen (Weatherford, 2010; Bellarby, 2009; Matanovic et al., 2012) which often deployed in poorly consolidated formation.

Sand production or sand influx is one of the major problems facing almost all fields that produce from unconsolidated sandstone formation (Durrett, 1977). Malaysian fields which comprise young rocks of Tertiary age are no exception (Tjia, 2000). The sand influx into producing well affects the economic limit for various reasons (Mann et al., 1962): (1) the replacement or maintenance of flowlines, chokes, valves and meters due to erosion by the flowing sand, (2) workover due to the sanding out of wells, (3) loss of wells due to casing or liners collapse, (4) increase in operational cost due to removal of sand and silt from the produced crude, (5) lowering production rates to decrease sand cuts which would subsequently reduce oil revenue, (6) frequent
Apart from the sand production, the application of horizontal wells at the loose sandstone reservoir can lead to some problems in the uniformity of the fluid influx along horizontal wellbores. Fernandes et al. (2009) found that higher pressure drawdown around the heel section results in frictional pressure drop of fluid flow in the wellbore which causes non-uniform fluid influx along the length of the wellbore and higher production rates at the heel. This often leads to early break-through of water or gas, which causes a reduction in oil recovery and uneven sweep of the drainage area.

Hence, the Inflow Control Devices (ICDs) with the integration of the sand screen were proposed as a solution to address this problem. Principally, ICD is a choking device installed as part of sandface completion hardware which has been utilized for more than two decades. Subsequent field experiences have proven the potential and beneficial of ICDs to extend well life by extending the plateau period, minimizing or delay water or gas coning, eliminate and minimize annular flow, and ensure a uniform inflow along the horizontal wellbore at the cost of a small pressure drop (Al-Khelaiwi and Davies, 2007).

In the early 1990’s, Norsk Hydro drilled most of the horizontal wells on the Norwegian Continental Shelf. At that time, the issue was to deal with water breakthrough after producing the wells for a short time. The idea was then emerged to install the ICDs along the horizontal section of the well in order to delay water breakthrough and achieve desired pressure drop in the ICD. Then, in 1998 the first installation of the helical channel type of ICD was completed in Troll field (Al Marzooqi et al., 2010; Adonoy, 2008).

The simulation model of the ICD’s placement and port configurations can be established using the NETool software, which is a micro-nodal analysis tool that integrates reservoir properties and completion architecture in the wellbore’s vicinity. (Rios, 2016; Halliburton, 2009). The placement and setting of the ICD is important to ensure a uniform inflow at the optimum production rate that has been achieved after
installation of the devices. The detailed design and mechanism of an ICD have been discussed further in Chapter 2.

1.2 Problem Statement

With advances in drilling technology over the past 30 years, horizontal and multilateral wells have become a basic well architecture in current field development. These advanced technologies facilitate the drilling and completion operations for such wells with the primary objective of maximising reservoir contact (Joshi, 1990; Fernandes et al., 2009). The wellbore offers a great contact area with the productive layer through the extension of well length which helps to lower the pressure drawdown required in order to achieve the same rate and enhance the well productivity. The field experiences have verified the advantages of horizontal wells in improving recovery and lowering the cost per unit length (Joshi, 1990; Al-Khelaiwi and Davies, 2007).

However, the increase in wellbore length and exposure to different reservoir facies came at a cost. Frictional pressure drops caused by fluid flow in horizontal sections resulted in higher drawdown pressure at the heels section of the completion, causing an unbalance fluid influx. Hence, the challenges and risk of horizontal wells applications are discussed as follow (Weatherford, 2009a):

1. Early water and/or gas coning near the heels section in the horizontal wells can lead to a loss in production and reserves extraction, and ultimately, a decrease in profitability.
2. Water and/or gas production from high permeability formations or fractures.
3. Non-uniform inflow profile in heterogeneous reservoirs.
5. Screen erosion failure in sand control completions due to hot-spotting.

To tackle these issues, the ICD technology has been introduced to reduce early water or gas production in horizontal wells, which can be installed together with the stand-alone-screens (SAS). ICDs are intentional choke in horizontal wellbore and will
slow down some zones which enforce the inflow balance. They also induce a pressure drop across the completion due to the choking effect (Oyeka et al., 2014). Besides, by reducing the tendency of early water or gas production, the ICD enables the reservoir to drain more efficiently while maximizing production and recovery. The device provides uniform production and flow contribution along the wellbore in horizontal wells, extending the well’s life.

Hence, this study was mainly focusing in the solving and optimizing the design of the ICDs which involved their sizing, the best nozzle sizing of ICD as well as the number of ICDs’ port openings. These criteria were crucial in order to provide the best functionality and effectiveness of ICDs in adjusting the imbalance of inflow profile arising from fluid frictional losses in homogeneous reservoirs and from permeability variation in heterogeneous formation (Weatherford, 2009b). The pressure drop across an ICD is strongly depending on the fluid density and insensitive to fluid viscosity. Therefore, the device has the tendency to prevent early water and gas breakthrough and encourage oil production (Weatherford, 2009a).

However, the main problem with ICD is it is a permanent device installed during well completion deployment and the design of ICD is based on the initial reservoir conditions and simulation prediction of the reservoir performance. The ICD is not adjustable and non-retrievable. Once installed downhole, the hardware will function as it remains in the well through the life of the well (Fernandes et al., 2009; Al Arfi et al., 2009). Hence, the main objective of this research study is to tackle the disadvantage of ICD and the study has been designed to investigate the behaviour of ICD’s port sizing/port opening towards the pressure drop of the reservoir for future technology development.

Abdelfattah et al. (2013) successfully proved that the breakthrough of unwanted fluid (gas or water) is invertible especially at the later stage of the well life even with the usage of the ICD. The typical productive well life may be divided into three stages which are the first stage, second stage and the final or last stage of the well life cycle. The first stage of the production life which also called as the start-up stage includes the flowing back completion fluid that was initially in the well. The production influx of the targeted reservoir fluid will occur at the second stage of the well life. The last
stage includes the production of the unwanted fluid such as gas or water from the reservoir. Abdelfattah et al. (2013) also mentioned that ICDs as an effective solution in controlling the reservoir influx is at its early or first stage of the production life and its efficiency will decline over the time especially at the last stage of well life. Therefore, this study has also proposed the best solution or future technology that would be able to tackle the advantage of ICD.

To accomplish the design and simulation works of this ICD, the NETool™ software is used as a primary stimulator tool. NETool™ is a steady-state numerical simulator — integrates the reservoir simulator and the lift design software — which enables engineers to simulate the flow in pipes uses the nodal analysis method. This software demonstrates the application of ICD in promoting the uniformity of the hydrocarbon influx from the reservoir along the horizontal section of the well. The proactive functionality of ICD subsequently shows the delay of onset of water breakthrough.

1.3 Hypotheses

The hypotheses of this study are as follow:

(1) The optimum size of an ICD and suitable number of ICDs are required to equalize the pressure drop along the drain length in order to achieve a uniform flow through the formation thereby delaying undesired water or gas breakthroughs.

(2) The appropriate selection of the flow port size is critical to obtain an efficient reservoir sweep and recovery as well as uniform inflow profile which must be maintained across the horizontal length interval (i.e., 1/8” or 3/32”).

(3) The number of open-flow ports which has been successfully designed based on the pressure drop across the horizontal length could achieve the desired flowing
profile. This operation is typically set on the onshore or offshore, without using rig time.

1.4 Objectives

The objectives of study are:

(1) To design the model of an ICD along the horizontal length using NETool™ software.

(2) To investigate the effect of important parameters towards the performance and functionality of the ICD along a horizontal wellbore.

1.5 Scope of Study

The scope of the study has been divided into two main sub-sections which are:

(1) Engineering — the design stage or modelling of the ICD placement and the port setting, and (2) The ICD offshore installation operation. The details are as follow:

(1) Designing and developing the NETool™ model of ICD across the production profile to ensure the appropriate number of ICDs, ICD sizing and port sizing as per reservoir condition and well architecture.

(2) Comparing the result between NETool™ base case/openhole scenario (without ICD) and NETool™ ICD case in order to see the effect of the ICD in the horizontal section.
(3) Modelling or predicting the relationship behaviour between the best resulted ICD port sizing/opening and the pressure drop of the reservoir for the case study or well.

(4) Establishing/running sensitivity study towards important parameters, such as size of ICD, flow port sizing, the usage of swell packer, flow rate, ICD roughness and ICD discharge coefficient in order to observe the effect of these parameters towards the performance and functionality of the ICD in simulating influx along the horizontal wellbore by coupling fluid flow through porous media and hydraulic flow into nozzle type of ICD completion architecture.

1.6 Significance of the Study

The findings of this study can definitely benefit oil and gas industry considering that ICDs play a significant role in the lower completion section of a long horizontal hole with large water aquifer. Having a great understanding in the functionally of the ICD itself is not enough to be part of the team in installing the device in the well. However, they require a deep understanding in designing the ICD placement along horizontal wellbore as well — which is not restricted to the ICD nozzle sizing and the number of open-flow ports — in order to ensure the effect of ICD is not detrimental.

Apart from that, having the knowledge of how the ICD sizing or port opening has responded with the pressure drop of a reservoir significantly benefits the industry in developing or improvising the technology for future use.

On top of that, the process flow and appropriate execution procedure of ICDs installation play an important role as well in order to accomplish the job as required and maintain the effectiveness of the ICDs. During the drilling process of an entire openhole section, the mud must be conditioned to ensure possible formation damage/screen plugging potential is kept to an absolute minimum. The use of clean
mud is critical to the success of sand control completion and ICD effectiveness (Weatherford, 2008; Weatherford, 2010; Weatherford, 2012).

1.7 Chapter Summary

The efficiency of the ICD in postponing or delaying the water or gas breakthrough as well as prolong the well life has been proven in a wide range of reservoir environment. However, the effectiveness of an ICD strongly depends on the appropriate design and planning of ICD placement and configurations which require the knowledge of the actual reservoir and geology data, such as permeability, porosity, reservoir pressure, oil/water saturation distribution, and well deviation data.

The main study of this thesis includes both the planning and design of the ICD placement and configuration and the wellsite deployment operations. The simulation model of the ICD has been run using NETool™ software which is a nodal analysis software. One case study has been demonstrated in this research project and has been discussed in detail the process flow from the planning and design stage up to the wellsite installation operations.
REFERENCES

presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 4-7 October.

Integrating Hole Cleaning Solution in the Drilling String to Lower Drilling Costs (April 2014). The Vallourec Oil & Gas Online Magazine, page-1.

Weatherford International Ltd. (2009a). *FloReg™ Inflow Control Device (ICD).* Houston, Texas, USA.

