OPTIMIZATION AND FRACTIONATION OF QUERCITRIN-RICH EXTRACT FROM MELASTOMA MALABATHRICUM LEAVES AND ITS BIOACTIVITIES

MOHD AZRIE BIN AWANG

A thesis submitted in fulfilment of the requirements for the award of the degree of
Doctor of Philosophy

School of Chemical and Energy Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

APRIL 2019
Dedicated to my beloved parents, family, lecturers and last but not least my fellow friends
ACKNOWLEDGEMENT

In the name of Allah s.w.t and Rasullullah s.a.w, I would like to grant my utmost gratitude to ALLAH the almighty for without the consent, inspiration and help, this study would have not been completed successfully.

First and foremost, I would like to acknowledge the kind and untiring guidance, support and constructive criticism, especially for my supervisor, Associate Professor Dr. Chua Lee Suan, and my committee members as well, Professor Dr. Luqman Chuah Abdullah, Professor Dr Mohammad Roji Sarmidi, Professor Ramlan Aziz and Dr Pin Kar Yong. Without their wisdom and idea during our discussion, this study would not have been implemented and executed well.

In addition, I would also like to extend my thanks to my colleagues from Institute Bioproduct development for their technical assistance and kind knowledge-sharing. Last but not least, I want to extend my deepest gratitude to my parents and family members, my friends for their encouragement and support.
Melastoma malabathricum (M. malabathricum) is also known as “senduduk”. It is a small shrub belonging to the family Melastomaceae. According to scientific studies, the leaves of this plant have been proven to possess many beneficial bioactivities and its extract has great therapeutic potential. However, limited research has been carried out, especially on the processing technologies for the bioactive extract of M. malabathricum leaves. Therefore, this study focused on the effect of temperatures on the drying kinetics and quality of M. malabathricum leaves in determining the optimum drying temperature. Degradation of quercitrin above 50°C suggesting that this could be the optimum temperature ranges. Midilli et al model shows to have the best fit to the experimental data of drying among the selected thin layer models with the high correlation coefficient (R^2>0.98). Response surface methodology was employed to optimize the ultrasonic assisted extraction and solid phase fractionation processes of M. malabathricum leaves using central composite design. The optimized extraction process conditions were solid to solvent ratio (1 mg: 20.83 ml), ultrasonic amplitude (68.6%) and particle size (440 µm) to obtain 13.4 % yield. The optimized fractionation conditions were loading concentration of crude extract (9.13 mg/ml), ratio of eluent system (70.4 %, methanol) and volume of eluent system (18.24 ml). The result showed that the content of quercitrin was increased from 10.31 mg/g in crude extract to 36.02 mg/g after fractionation using solid phase extraction (SPE). An equilibrium dependent extraction (EDE) model has successfully applied in describing the extraction process. EDE model is more accurate with R^2 value more than 0.90 and root mean square error less than 0.001. This explains the mass transfer resistance caused by quercitrin diffusion is negligible. The anti-diabetic activity of samples was successfully determined using dipeptidyl peptidase IV assay in vitro and in silico. The IC$_{50}$ of extract and fraction were found to be 48.25µg/ml and 30.71µg/ml, respectively. The lower IC$_{50}$ of fraction revealed the higher anti-diabetic activity of the fraction than crude extract. The binding energy of quercitrin was -6.21 kcal/mol which means the lowest of binding energy has high potential on anti-diabetic activity. The processing technology of quercitrin rich extract from M. malabathricum has been established based on the ultrasonic assisted extraction and followed by SPE clean-up process.
ABSTRAK

Melastoma malabathricum (*M. malabathricum*) juga dikenali sebagai "senduduk". Ia adalah sejenis pokok rimbun yang berasal daripada keluarga *Melastomaceae*. Menurut kajian saintifik, daun tumbuhan ini telah terbukti mempunyai banyak bioaktiviti yang bermanfaat dan ekstraknya mempunyai potensi terapeutik yang besar. Walau bagaimanapun, kajian yang telah dijalankan adalah terhad, terutamanya dalam teknologi pemprosesan ekstrak bioaktif daun *M. malabathricum*. Oleh itu, kajian ini memberi tumpuan kepada kesan suhu pada kinetik pengeringan dan kualiti daun *M. malabathricum* dalam menentukan suhu pengeringan optimum. Perosotan quercitrin melebihi 50°C boleh dicanangkan sebagai jual suhu optimum. Midilli et al model menunjukkan yang paling sesuai untuk data eksperimen pengeringan di antara model lapisan nipis dengan pekali korelasi tinggi (R²>0.98). Kaedah sambutan permukaan digunakan untuk mengoptimumkan proses pengekstrakan berbantu ultrasonik dan pecahan fasa pepejal daun *M. malabathricum* menggunakan rekabentuk komposit berpusat. Keadaan proses pengekstrakan yang optimum adalah nisbah pepejal kepada pelarut (1 mg:20.83 ml), amplitud ultrasonik (68.6%) dan saiz nisbah zarah (440 μm) untuk mendapatkan hasil 13.4%. Keadaan pecahan yang dioptimumkan ialah pemuatan kepekatan ekstrak mentah (9.13 mg/ml), nisbah sistem eluen (70.4%, metanol) dan isipadu sistem eluen (18.24 ml). Keputusan menunjukkan bahawa kandungan quercitrin meningkat dari 10.31 mg/g dalam ekstrak mentah hingga 36.02 mg/g selepas menggunakan pengekstrakan fasa pepejal (SPE). Model pengekstrakan bergantung keseimbangan (EDE) telah berjaya diterapkan dalam menerangkan proses pengekstrakan. EDE model ini lebih tepat dengan nilai R² lebih daripada 0.90 dan kesilapan punca-min-kuasadua kurang daripada 0.001. Ini menjelaskan rintangan pindah jisim yang disebabkan oleh penyerapan quercitrin diabaikan. Aktiviti anti-diabetes sampel telah berjaya ditentukan dengan assay dipeptidil peptidase IV *in vitro* dan *in silico*. IC₅₀ ekstrak dan pecahan masing-masing didapati 48.25μg/ml dan 30.71μg/ml. Pecahan IC₅₀ yang lebih rendah mendedahkan aktiviti anti-diabetes yang lebih tinggi daripada pecahan berbanding ekstrak mentah. Tenaga ikatan yang mengikat quercitrin ialah -6.21 kcal /mol ini bermakna tenaga ikatan yang rendah mempunyai potensi tinggi terhadap aktiviti anti-diabetes. Teknologi pemprosesan ekstrak kaya quercitrin dari *M. malabathricum* telah ditubuhkan berdasarkan pengekstrakan berbantu ultrasonik dan diikuti oleh proses pembersihan SPE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xix</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 3
1.3 Objectives 5
1.4 Scope of research 5
1.5 Significance of study 6

CHAPTER 2 LITERATURE REVIEW 9
2.1 Introduction to *Melastoma malabathricum* 9
2.2 Traditional Uses of *Melastoma malabathricum* 10
2.3 Phytochemical in *Melastoma malabathricum* 12
2.4 Beneficial bioactivities of *Melastoma malabathricum* 14
 2.4.1 Antioxidant and anti-inflammatory properties 15
 2.4.2 Antimicrobial properties 16
2.5 Acute toxicity of *Melastoma malabatricum* 17
2.6 Drying of raw herbal material

2.6.1 Parameter affecting drying process of medicinal plant

2.7 Extraction techniques for phytochemicals

2.8 Ultrasonic Assisted Extraction

2.9 Critical parameters for phytochemical extraction

2.9.1 Type of solvent

2.9.2 Ratio of solvent to solid

2.9.3 Extraction duration

2.9.4 Particle size of raw material

2.9.5 Ultrasound amplitude

2.10 Fractionation of crude extracts using solid phase extraction (SPE)

2.11 Parameters to increase solid phase extraction (SPE) performance

2.11.1 Solvent composition for solid phase extraction

2.11.2 Volume of solvent required for solid phase extraction

2.11.3 Concentration of crude extract loaded on solid phase extraction

2.12 Kinetic studies on drying and extraction of M. malabathricum

2.12.1 Mathematical models for drying

2.12.2 Mathematical models for extraction of bioactive compound

2.13 Response Surface Methodology for extraction optimization

2.14 Molecular docking analysis

2.15 Chemical assays of herbal extracts

2.15.1 Total phenolic content and total flavonoid content

2.15.2 Antioxidant assay based on free radical scavenging

2.15.3 Anti-diabetic assay based on enzymatic activity
CHAPTER 3 METHODOLOGY 63
3.1 Introduction to overall experimental works 63
3.2 Raw Materials and Chemicals 64
3.3 Drying process of Melastoma malabthricum leaves 66
 3.3.1 Effects of temperatures on drying 66
 3.3.2 Effect of temperature on drying kinetics 67
 3.3.3 Mathematical modeling for drying kinetics 68
3.4 Optimization of ultrasonic assisted extraction 70
3.5 Optimization of fractionation using solid phase extraction 73
3.6 Kinetics study of extraction using ultrasonic assisted extraction 76
3.7 Modeling of extraction using ultrasonic assisted extraction 77
 3.7.1 Diffusion-dependent Extraction (DDE) Model 77
 3.7.2 Equilibrium-dependent Extraction (EDE) Model 80
3.8 Simulation using molecular docking 83
3.9 Chemical characterization of crude extract and fraction 85
 3.9.1 Thin layer chromatography for quercitrin screening 85
 3.9.2 High performance liquid chromatography for quercitrin quantification 86
 3.9.3 Fourier-transform Infrared for functional group identification 86
3.10 Total phenolic content 87
3.11 Total flavonoid content 87
3.12 Free Radical Scavenging (DPPH) 88
3.13 Anti-diabetic activity using Dipeptidyl peptidase-IV (DPP-IV) 88

CHAPTER 4 RESULTS AND DISCUSSION 91
4.1 Effect of drying temperature on leaf quality 91
 4.1.1 Drying kinetics and mathematical modeling 91
4.1.2 Effect of drying temperature on yield and quercitrin content
4.1.3 Effect of drying temperature on total phenolic and total flavonoid content
4.1.4 Effect of drying temperature on anti-oxidant activity

4.2 Parameters screening for extraction process
4.2.1 Effect of solvent composition on the yield and quercitrin content
4.2.2 Effect of solid to solvent ratio on the yield and quercitrin content
4.2.3 Effect of particle size on the yield and quercitrin content
4.2.4 Effect of ultrasonic amplitude on the yield and quercitrin content
4.2.5 Effect of extraction time on the yield and quercitrin content

4.3 Optimization of M. malabathricum leaves Extraction
4.3.1 Model fitting for crude extracts yield and quercitrin content
4.3.2 Effect of extraction parameters on yield of crude extract
4.3.3 Effect of extraction parameters on quercitrin content
4.3.4 Verification of predictive model on the extraction

4.4 Parameters screening for quercitrin fractionation
4.4.1 Effect of pressure on the fraction yield and quercitrin content
4.4.2 Effect of loading concentration of crude extract on the fraction yield and quercitrin content
4.4.3 Effect of eluent composition on the fraction yield and quercitrin content
4.4.4 Effect of eluent volume on the fraction yield and quercitrin content
4.5 Optimization fractionation of crude extract 132
 4.5.1 Model fitting on fraction yield and quercitrin content 133
 4.5.2 Effect of fractionation parameters on fraction yield 141
 4.5.3 Effect of fractionation parameters on quercitrin content 144
 4.5.4 Verification of predictive model on the fractionation 147

4.6 Mathematical modeling of *M. malabathricum* leaves extract 148
 4.6.1 Extraction kinetics and mathematical modeling 149

4.7 Quantification of extract and fraction from *M. malabathricum* leaves 152
 4.7.1 Thin Layer Chromatography (TLC) identification of compound 152
 4.7.2 High Performance Liquid Chromatography (HPLC) identification of compound 153
 4.7.3 Fourier Transform Infrared (FT-IR) spectroscope identification of compound 155

4.8 *In silico* docking of dipeptidylpepetidase-4 (DPP-IV) 157

4.9 Anti-diabetic and antioxidant activity of optimum crude extract and fraction 160

CHAPTER 5 CONCLUSION AND RECOMMENDATION 165

5.1 Conclusion 165
5.2 Recommendation 167

REFERENCES 169

APPENDICES A-D 207
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Extraction of quercitrin compound from different plant sources</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Extraction of phytochemicals using ultrasonic assisted extraction method</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The fractionation of medical plants with different parts</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Previous studied on the solvent concentration of fractionation medical plant</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Typical solvent for solid phase extraction</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Fractionation studied of medical plant using SPE with different volume of solvent</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Thin layer models for drying process</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Thin layer models selected for different drying process</td>
<td>46</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Thin layer models for drying kinetics</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Independent level of experiments on M. malabathricum leaves extraction</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Design of the experiment on the extraction process</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Three levels of experimental design for quercitrin fractionation</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Design of the experiment on the fractionation process</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The values of correlation coefficient and drying constants for the models</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Model fitting summary</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Summary of ANOVA for the crude extract yield</td>
<td>113</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Summary of ANOVA for the quercitrin content</td>
<td>113</td>
</tr>
</tbody>
</table>
Table 4.5 The predicted and experimental values of response under the optimum extraction conditions 126
Table 4.6 Model summary statistics 133
Table 4.7 Summary of ANOVA for the yield 135
Table 4.8 Summary of ANOVA for the quercitrin content 135
Table 4.9 Predicted and experimental values of response under the respective conditions 148
Table 4.10 Constants of EDE model and DDE model for different ultrasonic intensities 150
Table 4.11 The interaction of ligands with residues binding energy and estimation dissociation constant for quercitrin and sitagliptin 157
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Different types of Melastoma malabathricum varieties; (a) dark purple-magenta petals, (b) white petals and (c) light pink-magenta petals</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Chemical structure of quercitrin</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Typical drying curves using moisture content vs. time and drying rate vs. moisture content</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Collapse of cavitation bubble and release of plant content</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Procedure of Solid phase extraction</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Normal extraction curve for mass transfer mechanism in extraction process</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Receptor protein for the Dipeptidyl peptidase-IV (DPP-IV) inhibitor</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Mechanism of DPPH radical scavenging activity assay</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Mechanism of action an inhibitor that incretin GLP-1</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Overview of process flow in this research work</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flowchart of virtual screening process in molecular docking</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Comparison between experimental data and the selected thin layer model for drying kinetics with different temperatures</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Yield of crude extract (bar) and quercitrin content (line) from ultrasonic probe using fresh leaves and dried leaves at different drying temperatures</td>
<td>98</td>
</tr>
</tbody>
</table>
Figure 4.3 Total phenolic content (bar) and total flavonoid content (line) in fresh leaves and dried leaves of different drying temperatures

Figure 4.4 Antioxidant activity of fresh leaves and dried leaves based on DPPH assay at different drying temperatures

Figure 4.5 Different ethanol composition on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.6 Different solid to solvent ratios on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.7 Different uparticle size on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.8 Different ultrasonic amplitudes on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.9 Different extraction time on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.10(a) The normal plot of residual for yield of extraction

Figure 4.10(b) The normal plot of residual for quercitrin content

Figure 4.11(a) Relationship between the predicted values versus the actual values on the yield of extraction

Figure 4.11(b) Relationship between the predicted values versus the actual values on the quercitrin content

Figure 4.12(a) The comparison between residual versus run of experiments on crude yield

Figure 4.12(b) The comparison between residual versus run of experiments on quercitrin content

Figure 4.13(a) Response surface plot of particle size (A) and ratio solid to solvent (B) on yield at constant ultrasonic amplitude (70%)

Figure 4.13(b) Response surface plot of particle size (A) and Ultrasonic amplitude (C) on the yield at fixed ratio solid to solvent of 1:20 mg/ml

Figure 4.13(c) Response surface plot of ratio solid to solvent (B) and ultrasonic amplitude (C) at constant particle size (450 µm)
Figure 4.14(a) Response surface plot of particle size (A) and ratio solid to solvent (B) on the quercitrin content at ultrasonic amplitude 70% 123

Figure 4.14(b) Response surface plot of particle size (A) and ultrasonic amplitude (C) on the quercitrin content at ratio solid to solvent to 1:20 mg/ml 124

Figure 4.14(c) Response surface plot of ratio solid to solvent (B) and ultrasonic amplitude (C) on the quercitrin content at the particle size of 450 µm 125

Figure 4.15 Different pressures on the fractionation of fraction yield and quercitrin content 128

Figure 4.16 Different concentration of crude extracts on the fractionation of fraction yield (bar) and quercitrin content (line) 129

Figure 4.17 Different eluent composition on the fractionation of fraction yield (bar) and quercitrin content (line) 130

Figure 4.18 Different volumes of eluent on the fractionation of fraction yield (bar) and quercitrin content (line) 132

Figure 4.19(a) Normal plot of residual for fraction yield 137

Figure 4.19(b) Normal plot of residual for quercitrin content 138

Figure 4.20(a) The illustrated of relationship between predicted values versus actual values on the yield 139

Figure 4.20(b) The illustrated of relationship between predicted values versus actual values on the quercitrin content 139

Figure 4.21(a) The comparison between residual versus run of experiments on fraction yield 140

Figure 4.21(b) The comparison between residual versus run of experiments on quercitrin content 141

Figure 4.22(a) Response surface of eluent composition (A) and concentration of crude extract (B) on the fraction yield at volume of column (4 cycles) 142

Figure 4.22(b) Response surface of eluent composition (A) and volume of column (C) on the fraction yield at loading concentration of crude extract (10mg/ml) 143
Figure 4.22(c) Response surface of loading concentration of crude extract (B) and volume of column (C) on the fraction yield at constant eluent composition (55%)

Figure 4.23(a) Response surface of eluent composition (A) and concentration of crude extract (B) on quercitrin content at volume of eluent (4 cycles)

Figure 4.23(b) Response surface of eluent composition (A) and volume of column (C) on quercitrin content at concentration of crude extract (10mg/ml)

Figure 4.23(c) Response surface of concentration of crude extract (B) and volume of column (C) on quercitrin content at eluent composition (55%)

Figure 4.24 Comparison between experimental data and EDE model for different ultrasonic intensities

Figure 4.25 The images of standard, crude extract and fraction from thin layer chromatography

Figure 4.26 (a), (b) and (c) The chromatograms result of standard, crude extract and fraction from the High performance liquid chromatography (HPLC) analysis

Figure 4.27 (a), (b) and (c) The result of standard, fraction and crude extract from Fourier Transform Infrared (FT-IR) spectroscope analysis

Figure 4.28 The illustrated molecular interaction of Sitagliptin with target protein: (a) ribbon structure and (b) skeletal structure

Figure 4.29 The illustrated molecular interaction of quercitrin with target protein: (a) ribbon structure and (b) skeletal structure

Figure 4.30 The DPPH and DPP-IV activity of crude extract and fraction samples with sitagliptin (positive control)

Figure 4.31 Inhibition of DPP-IV inhibitors at activity with different concentrations
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>R_{ss}</td>
<td>Ratio of solvent to solid (mlg$^{-1}$)</td>
</tr>
<tr>
<td>Y</td>
<td>Response of RSM</td>
</tr>
<tr>
<td>k</td>
<td>Extraction constant</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>EDE</td>
<td>Equilibrium dependent extraction</td>
</tr>
<tr>
<td>DDE</td>
<td>Diffusion dependent extraction</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
</tr>
<tr>
<td>TFC</td>
<td>Total flavonoid content</td>
</tr>
<tr>
<td>DPPH</td>
<td>Free radical scavenging</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>Dipeptidyl peptidase-IV</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(b_0\) - Regression coefficient of intercept term
\(b_1\) - Linear regression coefficient
\(b_2\) - Linear regression coefficient
\(b_{11}\) - Squared regression coefficient
\(b_{22}\) - Squared regression coefficient
\(b_{12}\) - Interaction regression coefficient.
\(M\) - Weight of total solid particles (g)
\(M_{db}\) - Moisture content (% dry basis)
\(M_e\) - Equilibrium moisture content (% wet basis)
\(M_0\) - Initial moisture content (% wet basis)
\(M_p\) - Weight of the solid particle (g)
\(MR\) - Dimensionless moisture ratio
\(MR_{exp}\) - Dimensionless moisture ratio from experiment result
\(MR_{pre}\) - Predicted dimensionless moisture ratio
\(C'\) - Fitting parameter
\(C_e\) - Equilibrium solute concentration in liquid phase (gcm\(^{-3}\))
\(C_L\) - Solute concentration in liquid phase (gcm\(^{-3}\))
\(C_{L,exp}\) - Solute concentration in liquid phase from experiment result (gcm\(^{-3}\))
\(C_p\) - Specific heat capacity
\(C_S\) - Solute concentration in solid phase (gcm\(^{-3}\))
\(D_e\) - Effective diffusivity coefficient (m\(^2\)s\(^{-1}\))
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/g</td>
<td>Miligram per gram</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Miligram per gram</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>µm</td>
<td>Microgram</td>
</tr>
<tr>
<td>ml</td>
<td>Mililiter</td>
</tr>
<tr>
<td>°C</td>
<td>Celcius</td>
</tr>
</tbody>
</table>
DECLARATION

“I declare that this thesis entitled Optimization and Fractionation of Quercitrin-rich Extract from Melastoma malabthricum Leaves and Its Bioactivities” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : ..
Name : MOHD AZRIE BIN AWANG
Date : 30th APRIL 2019
Dedicated to my beloved parents, family, lecturers and last but not least my fellow friends
ACKNOWLEDGEMENT

In the name of Allah s.w.t and Rasullullah s.a.w, I would like to grant my utmost gratitude to ALLAH the almighty for without the consent, inspiration and help, this study would have not been completed successfully.

First and foremost, I would like to acknowledge the kind and untiring guidance, support and constructive criticism, especially for my supervisor, Associate Professor Dr. Chua Lee Suan, and my committee members as well, Professor Dr. Luqman Chuah Abdullah, Professor Dr Mohammad Roji Sarmidi, Professor Ramlan Aziz and Dr Pin Kar Yong. Without their wisdom and idea during our discussion, this study would not have been implemented and executed well.

In addition, I would also like to extend my thanks to my colleagues from Institute Bioproduct development for their technical assistance and kind knowledge-sharing. Last but not least, I want to extend my deepest gratitude to my parents and family members, my friends for their encouragement and support.
ABSTRACT

Melastoma malabathricum (*M. malabathricum*) is also known as “senduduk”. It is a small shrub belonging to the family Melastomaceae. According to scientific studies, the leaves of this plant have been proven to possess many beneficial bioactivities and its extract has great therapeutic potential. However, limited research has been carried out, especially on the processing technologies for the bioactive extract of *M. malabathricum* leaves. Therefore, this study focused on the effect of temperatures on the drying kinetics and quality of *M. malabathricum* leaves in determining the optimum drying temperature. Degradation of quercitrin above 50°C suggesting that this could be the optimum temperature ranges. Midilli et al model shows to have the best fit to the experimental data of drying among the selected thin layer models with the high correlation coefficient (R²>0.98). Response surface methodology was employed to optimize the ultrasonic assisted extraction and solid phase fractionation processes of *M. malabathricum* leaves using central composite design. The optimized extraction process conditions were solid to solvent ratio (1 mg: 20.83 ml), ultrasonic amplitude (68.6%) and particle size (440 µm) to obtain 13.4 % yield. The optimized fractionation conditions were loading concentration of crude extract (9.13 mg/ml), ratio of eluent system (70.4 %, methanol) and volume of eluent system (18.24 ml). The result showed that the content of quercitrin was increased from 10.31 mg/g in crude extract to 36.02 mg/g after fractionation using solid phase extraction (SPE). An equilibrium dependent extraction (EDE) model has successfully applied in describing the extraction process. EDE model is more accurate with R² value more than 0.90 and root mean square error less than 0.001. This explains the mass transfer resistance caused by quercitrin diffusion is negligible. The anti-diabetic activity of samples was successfully determined using dipeptidyl peptidase IV assay *in vitro* and *in silico*. The IC₅₀ of extract and fraction were found to be 48.25µg/ml and 30.71µg/ml, respectively. The lower IC₅₀ of fraction revealed the higher anti-diabetic activity of the fraction than crude extract. The binding energy of quercitrin was -6.21 kcal/mol which means the lowest of binding energy has high potential on anti-diabetic activity. The processing technology of quercitrin rich extract from *M. malabathricum* has been established based on the ultrasonic assisted extraction and followed by SPE clean-up process.
ABSTRAK

Melastoma malabathricum (*M. malabathricum*) juga dikenali sebagai "senduduk". Ia adalah sejenis pokok rimbun yang berasal daripada keluarga Melastomaceae. Menurut kajian saintifik, daun tumbuhan ini telah terbukti mempunyai banyak bioaktiviti yang bermanfaat dan ekstraknya mempunyai potensi terapeutik yang besar. Walau bagaimanapun, kajian yang telah dijalankan adalah terhad, terutamanya dalam teknologi pemprosesan ekstrak bioaktif daun *M. malabathricum*. Oleh itu, itu memberi tumpuan kepada kesan suhu pada kinetik pengeringan dan kualiti daun *M. malabathricum* dalam menentukan suhu pengeringan optimum. Perosotan quercitrin melebihi 50°C boleh dicadangkan sebagai jual suhu optimum. Midilli et al model menunjukkan yang paling sesuai untuk data eksperimen pengeringan di antara model lapisan nipis dengan pecahan komposit. Keadaan proses pengekstrakan yang optimum adalah nisbah pepejal kepada pelarut (1 mg:20.83 ml), amplitud ultrasonik (68.6%) dan saiz nisbah zarah (440 μm) untuk mendapatkan hasil 13.4%. Keadaan pecahan yang dioptimumkan ialah pemuanan kekekatan ekstrak mentah (9.13 mg/ ml), nisbah sistem eluen (70.4%, metanol) dan isipadu sistem eluen (18.24 ml). Keputusan menunjukkan bahawa kandungan quercitrin meningkat dari 10.31 mg/g dalam ekstrak mentah hingga 36.02 mg/g selepas menggunakan pengekstrakan fasa pepejal (SPE). Model pengekstrakan bergantung keseimbangan (EDE) telah berjaya diterapkan dalam menerangkan proses pengekstrakan. EDE model ini lebih tepat dengan nilai \(R^2 \) lebih daripada 0.90 dan kesilapan punca-min-kuasadua kurang daripada 0.001. Ini menjelaskan rintangan pindah jisim yang disebabkan oleh penyebaban quercitrin diabaikan. Aktiviti anti-diabetes sampel telah berjaya ditentukan dalam assay dipeptidil peptidase IV *in vitro* dan *in silico*. IC\(_{50}\) ekstrak dan pecahan masing-masing didapati 48.25μg/ ml dan 30.71μg / ml. Pecahan IC\(_{50}\) yang lebih rendah mendedahkan aktiviti anti-diabetes yang lebih tinggi daripada pecahan berbanding ekstrak mentah. Tenaga ikatan yang mengikat quercitrin ialah -6.21 kcal /mol ini bermakna tenaga ikatan yang rendah mempunyai potensi tinggi terhadap aktiviti anti-diabetes. Teknologi pemprosesan ekstrak kaya quercitrin dari *M. malabathricum* telah ditubuhkan berdasarkan pengekstrakan berbantu ultrasonik dan diikuti oleh proses pembersihan SPE.
TABLE OF CONTENTS

TITLE PAGE
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xviii
LIST OF SYMBOLS xix

CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 3
1.3 Objectives 5
1.4 Scope of research 5
1.5 Significance of study 6

CHAPTER 2 LITERATURE REVIEW 9
2.1 Introduction to Melastoma malabathricum 9
2.2 Traditional Uses of Melastoma malabathricum 10
2.3 Phytochemical in Melastoma malabathricum 12
2.4 Beneficial bioactivities of Melastoma malabathricum 14
 2.4.1 Antioxidant and anti-inflammatory properties 15
 2.4.2 Antimicrobial properties 16
2.5 Acute toxicity of Melastoma malabatricum 17
CHAPTER 3 METHODOLOGY

3.1 Introduction to overall experimental works 63
3.2 Raw Materials and Chemicals 64
3.3 Drying process of *Melastoma malabathricum* leaves 66
 3.3.1 Effects of temperatures on drying 66
 3.3.2 Effect of temperature on drying kinetics 67
 3.3.3 Mathematical modeling for drying kinetics 68
3.4 Optimization of ultrasonic assisted extraction 70
3.5 Optimization of fractionation using solid phase extraction 73
3.6 Kinetics study of extraction using ultrasonic assisted extraction 76
3.7 Modeling of extraction using ultrasonic assisted extraction 77
 3.7.1 Diffusion-dependent Extraction (DDE) Model 77
 3.7.2 Equilibrium-dependent Extraction (EDE) Model 80
3.8 Simulation using molecular docking 83
3.9 Chemical characterization of crude extract and fraction 85
 3.9.1 Thin layer chromatography for quercitrin screening 85
 3.9.2 High performance liquid chromatography for quercitrin quantification 86
 3.9.3 Fourier-transform Infrared for functional group identification 86
3.10 Total phenolic content 87
3.11 Total flavonoid content 87
3.12 Free Radical Scavenging (DPPH) 88
3.13 Anti-diabetic activity using Dipeptidyl peptidase-IV (DPP-IV) 88

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effect of drying temperature on leaf quality 91
 4.1.1 Drying kinetics and mathematical modeling 91
4.1.2 Effect of drying temperature on yield and quercitrin content
4.1.3 Effect of drying temperature on total phenolic and total flavonoid content
4.1.4 Effect of drying temperature on anti-oxidant activity
4.2 Parameters screening for extraction process
4.2.1 Effect of solvent composition on the yield and quercitrin content
4.2.2 Effect of solid to solvent ratio on the yield and quercitrin content
4.2.3 Effect of particle size on the yield and quercitrin content
4.2.4 Effect of ultrasonic amplitude on the yield and quercitrin content
4.2.5 Effect of extraction time on the yield and quercitrin content
4.3 Optimization of M. malabathricum leaves Extraction
4.3.1 Model fitting for crude extracts yield and quercitrin content
4.3.2 Effect of extraction parameters on yield of crude extract
4.3.3 Effect of extraction parameters on quercitrin content
4.3.4 Verification of predictive model on the extraction
4.4 Parameters screening for quercitrin fractionation
4.4.1 Effect of pressure on the fraction yield and quercitrin content
4.4.2 Effect of loading concentration of crude extract on the fraction yield and quercitrin content
4.4.3 Effect of eluent composition on the fraction yield and quercitrin content
4.4.4 Effect of eluent volume on the fraction yield and quercitrin content
4.5 Optimization fractionation of crude extract

4.5.1 Model fitting on fraction yield and quercitrin content

4.5.2 Effect of fractionation parameters on fraction yield

4.5.3 Effect of fractionation parameters on quercitrin content

4.5.4 Verification of predictive model on the fractionation

4.6 Mathematical modeling of *M. malabathricum* leaves extract

4.6.1 Extraction kinetics and mathematical modeling

4.7 Quantification of extract and fraction from *M. malabathricum* leaves

4.7.1 Thin Layer Chromatography (TLC) identification of compound

4.7.2 High Performance Liquid Chromatography (HPLC) identification of compound

4.7.3 Fourier Transform Infrared (FT-IR) spectrocope identification of compound

4.8 *In silico* docking of dipeptidylpepetidase-4 (DPP-IV)

4.9 Anti-diabetic and antioxidant activity of optimum crude extract and fraction

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

5.2 Recommendation

REFERENCES

APPENDICES A-D
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Extraction of quercitrin compound from different plant sources</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Extraction of phytochemicals using ultrasonic assisted extraction method</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The fractionation of medical plants with different parts</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Previous studied on the solvent concentration of fractionation medical plant</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Typical solvent for solid phase extraction</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Fractionation studied of medical plant using SPE with different volume of solvent</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Thin layer models for drying process</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Thin layer models selected for different drying process</td>
<td>46</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Thin layer models for drying kinetics</td>
<td>69</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Independent level of experiments on M. malabathricum leaves extraction</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Design of the experiment on the extraction process</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Three levels of experimental design for quercitrin fractionation</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Design of the experiment on the fractionation process</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The values of correlation coefficient and drying constants for the models</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Model fitting summary</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Summary of ANOVA for the crude extract yield</td>
<td>113</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Summary of ANOVA for the quercitrin content</td>
<td>113</td>
</tr>
</tbody>
</table>
Table 4.5 The predicted and experimental values of response under the optimum extraction conditions 126

Table 4.6 Model summary statistics 133

Table 4.7 Summary of ANOVA for the yield 135

Table 4.8 Summary of ANOVA for the quercitrin content 135

Table 4.9 Predicted and experimental values of response under the respective conditions 148

Table 4.10 Constants of EDE model and DDE model for different ultrasonic intensities 150

Table 4.11 The interaction of ligands with residues binding energy and estimation dissociation constant for quercitrin and sitagliptin 157
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Different types of Melastoma malabathricum varieties; (a) dark purple-magenta petals, (b) white petals and (c) light pink-magenta petals</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Chemical structure of quercitrin</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Typical drying curves using moisture content vs. time and drying rate vs. moisture content</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Collapse of cavitation bubble and release of plant content</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Procedure of Solid phase extraction</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Normal extraction curve for mass transfer mechanism in extraction process</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Receptor protein for the Dipeptidyl peptidase-IV (DPP-IV) inhibitor</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Mechanism of DPPh radical scavenging activity assay</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Mechanism of action an inhibitor that incretin GLP-1</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Overview of process flow in this research work</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flowchart of virtual screening process in molecular docking</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Comparison between experimental data and the selected thin layer model for drying kinetics with different temperatures</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Yield of crude extract (bar) and quercitrin content (line) from ultrasonic probe using fresh leaves and dried leaves at different drying temperatures</td>
<td>98</td>
</tr>
</tbody>
</table>
Figure 4.3 Total phenolic content (bar) and total flavonoid content (line) in fresh leaves and dried leaves of different drying temperatures

Figure 4.4 Antioxidant activity of fresh leaves and dried leaves based on DPPH assay at different drying temperatures

Figure 4.5 Different ethanol composition on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.6 Different solid to solvent ratios on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.7 Different uparticle size on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.8 Different ultrasonic amplitudes on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.9 Different extraction time on the extraction of crude extract yield (bar) and quercitrin content (line)

Figure 4.10(a) The normal plot of residual for yield of extraction

Figure 4.10(b) The normal plot of residual for queritrin content

Figure 4.11(a) Relationship between the predicted values versus the actual values on the yield of extraction

Figure 4.11(b) Relationship between the predicted values versus the actual values on the quercitrin content

Figure 4.12(a) The comparison between residual versus run of experiments on crude yield

Figure 4.12(b) The comparison between residual versus run of experiments on quercitrin content

Figure 4.13(a) Response surface plot of particle size (A) and ratio solid to solvent (B) on yield at constant ultrasonic amplitude (70%)

Figure 4.13(b) Response surface plot of particle size (A) and Ultrasonic amplitude (C) on the yield at fixed ratio solid to solvent of 1:20 mg/ml

Figure 4.13(c) Response surface plot of ratio solid to solvent (B) and ultrasonic amplitude (C) at constant particle size (450 µm)
Figure 4.14(a) Response surface plot of particle size (A) and ratio solid to solvent (B) on the quercitrin content at ultrasonic amplitude 70%

Figure 4.14(b) Response surface plot of particle size (A) and ultrasonic amplitude (C) on the quercitrin content at ratio solid to solvent to 1:20 mg/ml

Figure 4.14(c) Response surface plot of ratio solid to solvent (B) and ultrasonic amplitude (C) on the quercitrin content at the particle size of 450 µm

Figure 4.15 Different pressures on the fractionation of fraction yield and quercitrin content

Figure 4.16 Different concentration of crude extracts on the fractionation of fraction yield (bar) and quercitrin content (line)

Figure 4.17 Different eluent composition on the fractionation of fraction yield (bar) and quercitrin content (line)

Figure 4.18 Different volumes of eluent on the fractionation of fraction yield (bar) and quercitrin content (line)

Figure 4.19(a) Normal plot of residual for fraction yield

Figure 4.19(b) Normal plot of residual for quercitrin content

Figure 4.20(a) The illustrated of relationship between predicted values versus actual values on the yield

Figure 4.20(b) The illustrated of relationship between predicted values versus actual values on the quercitrin content

Figure 4.21(a) The comparison between residual versus run of experiments on fraction yield

Figure 4.21(b) The comparison between residual versus run of experiments on quercitrin content

Figure 4.22(a) Response surface of eluent composition (A) and concentration of crude extract (B) on the fraction yield at volume of column (4 cycles)

Figure 4.22(b) Response surface of eluent composition (A) and volume of column (C) on the fraction yield at loading concentration of crude extract (10mg/ml)
Figure 4.22(c) Response surface of loading concentration of crude extract (B) and volume of column (C) on the fraction yield at constant eluent composition (55%)

Figure 4.23(a) Response surface of eluent composition (A) and concentration of crude extract (B) on quercitrin content at volume of eluent (4 cycles)

Figure 4.23(b) Response surface of eluent composition (A) and volume of column (C) on quercitrin content at concentration of crude extract (10mg/ml)

Figure 4.23(c) Response surface of concentration of crude extract (B) and volume of column (C) on quercitrin content at eluent composition (55%)

Figure 4.24 Comparison between experimental data and EDE model for different ultrasonic intensities

Figure 4.25 The images of standard, crude extract and fraction from thin layer chromatography

Figure 4.26 (a), (b) and (c) The chromatograms result of standard, crude extract and fraction from the High performance liquid chromatography (HPLC) analysis

Figure 4.27 (a), (b) and (c) The result of standard, fraction and crude extract from Fourier Transform Infrared (FT-IR) spectroscope analysis

Figure 4.28 The illustrated molecular interaction of Sitagliptin with target protein: (a) ribbon structure and (b) skeletal structure

Figure 4.29 The illustrated molecular interaction of quercitrin with target protein: (a) ribbon structure and (b) skeletal structure

Figure 4.30 The DPPH and DPP-IV activity of crude extract and fraction samples with sitagliptin (positive control)

Figure 4.31 Inhibition of DPP-IV inhibitors at activity with different concentrations
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>R_{ss}</td>
<td>Ratio of solvent to solid (mlg(^{-1}))</td>
</tr>
<tr>
<td>Y</td>
<td>Response of RSM</td>
</tr>
<tr>
<td>k</td>
<td>Extraction constant</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>EDE</td>
<td>Equilibrium dependent extraction</td>
</tr>
<tr>
<td>DDE</td>
<td>Diffusion dependent extraction</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
</tr>
<tr>
<td>TFC</td>
<td>Total flavonoid content</td>
</tr>
<tr>
<td>DPPH</td>
<td>Free radical scavenging</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>DPP-IV</td>
<td>Dipeptidyl peptidase-IV</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>Regression coefficient of intercept term</td>
</tr>
<tr>
<td>b_1</td>
<td>Linear regression coefficient</td>
</tr>
<tr>
<td>b_2</td>
<td>Linear regression coefficient</td>
</tr>
<tr>
<td>b_{11}</td>
<td>Squared regression coefficient</td>
</tr>
<tr>
<td>b_{22}</td>
<td>Squared regression coefficient</td>
</tr>
<tr>
<td>b_{12}</td>
<td>Interaction regression coefficient.</td>
</tr>
<tr>
<td>M</td>
<td>Weight of total solid particles (g)</td>
</tr>
<tr>
<td>M_{db}</td>
<td>Moisture content (% dry basis)</td>
</tr>
<tr>
<td>M_e</td>
<td>Equilibrium moisture content (% wet basis)</td>
</tr>
<tr>
<td>M_o</td>
<td>Initial moisture content (% wet basis)</td>
</tr>
<tr>
<td>M_p</td>
<td>Weight of the solid particle (g)</td>
</tr>
<tr>
<td>MR</td>
<td>Dimensionless moisture ratio</td>
</tr>
<tr>
<td>MR_{exp}</td>
<td>Dimensionless moisture ratio from experiment result</td>
</tr>
<tr>
<td>MR_{pre}</td>
<td>Predicted dimensionless moisture ratio</td>
</tr>
<tr>
<td>C'</td>
<td>Fitting parameter</td>
</tr>
<tr>
<td>C_e</td>
<td>Equilibrium solute concentration in liquid phase (gcm$^{-3}$)</td>
</tr>
<tr>
<td>C_L</td>
<td>Solute concentration in liquid phase (gcm$^{-3}$)</td>
</tr>
<tr>
<td>$C_{L,exp}$</td>
<td>Solute concentration in liquid phase from experiment result (gcm$^{-3}$)</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>C_S</td>
<td>Solute concentration in solid phase (gcm$^{-3}$)</td>
</tr>
<tr>
<td>D_e</td>
<td>Effective diffusivity coefficient (m2s$^{-1}$)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>mg/g</td>
<td>Miligram per gram</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>mg/ml</td>
<td>Miligram per gram</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>µm</td>
<td>Microgram</td>
</tr>
<tr>
<td>ml</td>
<td>Mililiter</td>
</tr>
<tr>
<td>ºC</td>
<td>Celcius</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, there has been an increasing demand for specialty phytochemicals in herbal medicinal products, cosmeceuticals, neutraceuticals and functional food products. This trend is somewhat due to the consumer preference for products containing phytochemical ingredients, which are generally perceived as milder, safer and healthier than their synthetic equivalents (Harjo et al., 2004). In addition, medicinal plants have formed the basis of traditional medicine system, and more recently are good sources of lead compounds for modern medicines, neutraceuticals, food supplements, folk medicines, pharmaceutical intermediates and chemical entities for synthetic drugs, especially against numerous diseases (Harjo et al., 2004).

In order to produce herbal medicines, standardization for the process of producing herbal extracts or phytochemicals, in which product potency is guaranteed through the consistency of active compound content is essential. The process development and effective analyses are the keys to standardization. Thus, process development in producing valuable natural products is essential to ensure the herbal products met the quality, safety and efficacy requirements.

Drying is known as dehydration process which involves removal of moisture. Most of the drying techniques apply heat on the raw materials which might cause certain level of phytochemical degradation or loss of quality. In particular,
phytochemicals that contributes to the beneficial bioactivity of medicinal plants. Thus, the major consideration in herbal drying is to shorten the drying time to preserve the active phytochemicals.

Extraction is referred as a technique to separate active constituents from plant tissue using selected solvents. The extract contains beneficial bioactive compounds of the original plant. Nowadays, there are several of extractions techniques used to increase bioactive compounds from plants such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) and accelerated solvent extraction (ASE). Among these, ultrasonic assisted extraction (UAE) has been found to enhance extraction efficiency and extraction time. In addition, UAE can be carried out at lower temperature to avoid thermal damage (Rouhani et al., 2009; Easmin et al., 2014). The improvement of solvent extraction by ultrasound is due to the mechanical effect of acoustic cavitation, which enhances mass transfer and solvent penetration into the plant material by disrupting the cell walls (Vilkhu et al., 2008; Rouhani et al., 2009). Besides, UAE gave higher productivity, yield and selectivity during extraction of medicinal plant (Easmin et al., 2014). Also, better processing time which is reduced time consuming during extraction compared with others conventional method. Low solvent consumption were used and environmental friendly (Easmin et al., 2014).

Fractionation is another process to further segregate a complex mixture of crude extract into smaller portions based on solvent property. There are several types of fractionation techniques such as column chromatography and solid phase extraction (SPE). Recently, SPE is widely used for research activity due to the advantages of fast, minimal usage of solvent and wide range selection of solid phase adsorbent (Ku et al., 2001).

The kinetic model is a differential equation or empirical equation that describes the independent variables and rate laws for a particular physical, chemical or biological system (Resat et al., 2009). The model is a quantitative statement of
theory describing the mechanism of a biological or chemical process (Okpokwasili and Nweke, 2005). In the extraction of plant material, kinetic model is used to describe the kinetic profile of a phytochemical compound during extraction process. The mathematical model is very useful in facilitating the optimization, scale-up, simulation of process and controlling the industrial projects by counting the time and energy (San’Ann et al., 2012).

Melastoma malabathricum which is locally known as “senduduk” is a small shrub belonging to the family *Melastomaceae*. This plant is native to tropical and temperate Asia countries, including Malaysia. The promising traditional applications have led to the chemical and biological studies of this plant in modern research. Previous researchers discovered that *M. malabathricum* leaves possessed a number of beneficial bioactivities such as anti-inflammatory, anti-microbial, antiviral, antiparasitic, cytotoxicity, anticoagulant, platelet-activating factor inhibitory, wound healing, antiulcer and antipyretic (Zakaria et al., 2012).

In this study, the biological activity was focused on the anti-diabetic activity of the plant crude extract and its fraction. According to Hussein et al., (2016), diabetes is a major public health problem in Malaysia, and prevalence of types 2 diabetes has escalated to 20.8% in adult above the age 30. Therefore, intensive studies on *M. malabathricum* are essential, especially its anti-diabetic property due to the presence of quercitrin as the bioactive compound in the leaf extract.

1.2 Problem Statement

Recently, the demand of herbal product is increasing. There are many types of herbal products such as energy drinks, health supplement, as well as herbal tea in the market. The good products commercialized in local market are not sufficient to
meet the blooming demand. There is also no standardized procedure in preparing the plant extract according to their applications, for example in herbal medicine, cosmeceutical, and functional foods. *M. malabathricum* leaves are very perishable and therefore always subject to wastage by quick spoilage resulted from dehydration, fungal infection and others (Rajenderan *et al*., 2010). There are many initiatives taken to solve the problem including drying of leaves, using chemical treatment, manipulation of storage temperature and extracting phytochemicals from leaves. There is lack of research on the processing aspects to produce standardized extracts. The optimization parameters during extraction may help in increasing extracted active compound. Based on previous study of other plants, ultrasonic assisted extraction a great supremacy of extracting phytochemicals in a short period of time (Vilkhu *et al*., 2008). Since the extraction of phytochemicals increased, the biological activity was contributed greatly by the presence of active compounds will most like to increases as well (Joana Gil-Chavez *et al*., 2013). Thus, this research studied on ultrasonic assisted extraction (UAE) method by controlling the condition of extraction in order to produce the maximum quantity of extract.

Quercitrin is one of the quercetin derivatives belonging to a glycosylated flavonoid. It presents as a major compound in *M. malabathricum* leaves. To our knowledge, there has no kinetic study on quercitrin extraction from *M. malabathricum* leaves using ultrasonic assisted extraction. This study was to investigate the kinetic of quercitrin extraction. Then, fractionation process was carried out to further increase the content of quercitrin from the crude extract. This study was also focused on the fractionation using solid phase extraction with strata C₁₈ as absorbent to concentrate quercitrin content from the crude extract.

Scientific findings indicated that bioactive fraction from this plant has multiple beneficial effects on biological activities. Hence, *in silico* and *in vitro* studies were performed to determine its anti-diabetic activity. Previously, there is limited study on the effect of quercitrin for anti-diabetic activity using molecular docking simulation. Most of the studies were focused on crude extract, but seldom using quercitrin rich fraction.
1.3 Objectives

The objective of this study were

1. To optimize the drying process for *Melastoma malabathricum* leaves based on high quality of crude extract in quercitrin content, total phenolic content, total flavonoid content and antioxidant activity.
2. To optimize the extraction parameters for high yield of crude extract and quercitrin content using ultrasonic assisted extraction.
3. To optimize the fractionation variables to increase quercitrin content from crude extract using solid phase extraction.
4. To determine the anti-diabetic property of crude extract and its quercitrin rich fraction.

1.4 Scope of Research

The following scopes have been identified to achieve the objectives.

1. To optimize the drying process of *M. malabathricum* leaves with drying temperature between 40 - 80 °C for high quality of extract with high yield and quercitrin content.
2. To determine the effects of drying on the quality of *M. malabathricum* leaves based on the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity.
3. To investigate the drying kinetics of *M. malabathricum* leaves in order to determine the optimum drying temperature and duration. Thin layer models were used to explain the drying process.
4. To optimize the extraction of *M. malabathricum* leaves using ultrasonic assisted extraction based on the yield of crude extract and quercitrin content. The
optimization was carried out based on three different variables such as solid to solvent ratio, particles size, and amplitude in central composite design.

5. To investigate the kinetic extraction of quercitrin from *M. malabathricum* leaves using mathematical modeling such as equilibrium dependent model and diffusion dependent model.

6. To optimize fractionation based on the most influential process parameters, namely ratio composition of eluent, concentration of extract, and volume of column using central composite design.

7. To characterize the crude extract and its fraction using High Performance Liquid Chromatography (HPLC), Thin Layer Chromatography (TLC), and Fourier Transform Infrared Spectroscopy (FTIR) were also performed.

8. To investigate the *in silico* and *in vitro* studies on anti-diabetic property of the plant crude extract and fraction. *In silico* study was carried out using molecular docking based on virtual screening method. Meanwhile, *in vitro* study was carried out using crude extract and fraction on dipeptidylpeptidase-4 (DPP-IV) inhibitor.

1.5 Significance of Study

The herbal industry which was once backyard industry has grown into business that generates multibillion worth of return annually (Kumari *et al.*, 2011). Good quality products commercialized in local market are not sufficient to meet the blooming demand. The significance of this study is to provide the information about the drying process of the herbal plant and optimize the process condition of ultrasonic assisted extraction (UAE) and fractionation using solid phase extraction (SLE) from *M. malabathricum* leaves. This information can contribute to the other researchers and industry for further study on this plant.
Drying is known as dehydration process which involves removal of moisture. Most of the drying techniques apply heat on the raw materials which might cause certain level of degradation or loss of quality. Possibly, the degraded phytochemicals contribute to the beneficial bioactivity of medicinal plants. Thus, the major contribution is to shorten the drying time, while preserving the active quercitrin in the herbal extract.

Extraction is referred as a technique to separate medicinally active component from plant tissues using selective solvent. The extract concentrates target phytochemicals of the original plant. The extraction was an initial step to release the chemical or bioactive compounds from the plant material which is also a part of food and phyto-pharmaceutical technology (Vinatoru, 2001). For the extraction process, different herbal parts will produce different phytochemical content because of plant matrices. Apart from that, factors such as types of solvent, particles size, temperature, extraction time and extraction techniques played a role in the overall extraction process. The optimum parameters can be used for further study of scaling up process in industry.

Then, follow up with the fractionation process to enrich the quercitrin content. The term of fraction usually refers as the process to separate the chemical substances into different chemical groups. The separated components are divided into different fractions according to the solvent polarity. In this study, the solid phase extraction (SPE) technique was used to optimize the fractionation process. This green chemistry technique was equipped with packed sorbent material, particularly either silica-base or organic resin-based sorbent. It is a relatively new and popular technique for the plant fractionation.
The kinetic model of the extraction process can be used to predict the quantity and quality of herbal extract for herbal industry. In this study, the kinetic of quercitrin extraction is critical for the prediction of quercitrin content. Besides, the change of quercitrin content along the extraction process is also essential in herbal product industry, especially for large scale production.
REFERENCES

and the flavonoid quercitrin isolated from Bauhinia microstachya leaves. Journal of Pharmacy and Pharmacology, 57(10), 1345-1351.

Subacute Administration and Isolation of Active Principle. *Life Sciences*, 72(20), 2273-2283.

of mass transfer in supercritical CO2 extraction processes. Physics Procedia, 3(1), 141-146.

Xi, J., He, L., and Yan, L. (2015). Kinetic modeling of pressure-assisted solvent extraction of polyphenols from green tea in comparison with the conventional extraction. *Food Chemistry*, 166, 287–91.

