Universiti Teknologi Malaysia Institutional Repository

Plasmonic op-amp circuit model using the inline successive microring pumping technique

Youplao, P. and Sarapat, N. and Porsuwancharoen, N. and Chaiwong, K. and Jalil, M. A. and Amiri, I. S. and Ali, J. and Aziz, M. S. and Chiangga, S. and Singh, G. and Yupapin, P. and Grattan, K. T. V. (2018) Plasmonic op-amp circuit model using the inline successive microring pumping technique. Microsystem Technologies, 24 (9). pp. 3689-3695. ISSN 0946-7076

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1007/s00542-018-3823-4

Abstract

The electro-optic power pumping system model using the inline successive technique within the modified add-drop filter is proposed. A pumping system consists of a closed loop Panda ring resonator, from which the optical power is coupled inline into the system. By controlling the two side phase modulators, the whispering gallery mode (WGM) is generated by the amplitude-squeezed light within the modified add-drop filter. By using the proposed circuits, the low current can be applied into the system via a gold layer connection, from which the amplified output current can be obtained at the throughput port, which can be functioned as the electronic operational amplifier (op-amp). In application, the WGM output is the amplified signal that can be used for the up (down) link in free space communication network called light fidelity (LiFi). The electro-optic signals conversion can be performed by the stacked layers of silicon–graphene–gold materials. The results obtained have shown that large gain is obtained at the WGM output, which is ~ 5 × 10-6cm2(VsW)-1, when the pumping saturation time is ~ 2 fs. It concludes the suitability of our proposed model for light fidelity, LiFi up-down link conversion.

Item Type:Article
Uncontrolled Keywords:add-drop filters, amplified signals, circuit modeling, free-space communication
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:85873
Deposited By: Yanti Mohd Shah
Deposited On:28 Jul 2020 10:45
Last Modified:28 Jul 2020 10:45

Repository Staff Only: item control page