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CHAPTER 1

INTRODUCTION

1.1 Overview

Due to the depletion of fossil fuel resources and the environmental 

contamination by green-house gases, the utilization of renewable energy (RE) has been 

on a constant rise. It is envisaged that RE will play an important role in the future 

energy mix [1]. For instance, by 2020, it is expected that 12% of the world’s electricity 

will be produced by RE [2]. Furthermore, the global awareness is increasing in many 

countries, while international communities are promoting the climate-friendly and 

clean energy sources. These concerns are reflected in the recent 21st Conference of 

Parties (COP21) on climate change which was held in Paris [3]. However, RE 

resources are naturally unstable and highly intermittent. The inter-connection of RE 

sources with various kinds of loads have imposed serious power quality (P-Q) issues 

to the electrical grid. The most common P-Q problems are the voltage sag, swell and 

harmonics [4]. This is more severe with the proliferation of loads that draw non- 

sinusoidal current.

Rapid development in power electronics and control offers P-Q improvement 

using flexible AC transmission system (FACTS) controllers [5]. At the electrical 

distribution level, the D-STATCOM, which is in the family of FACTS devices, has 

been frequently used for power factor correction, load balancing, voltage regulation 

and stabilization. These functions are achieved by means of the reactive power 

compensation [6-8]. Traditionally, the low cost, two-level voltage source inverter 

(VSI) with a series coupling inductor, is used as the main building block of the D- 

STATCOM [9, 10]. However, the output voltage of the VSI is characterized by high
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harmonics that require bulky and costly filtering. Furthermore, for high and medium 

voltage interconnections, it is mandatory to use the line frequency (50 Hz) step-up 

transformer to match the output voltage of the VSI to the utility grid. This increases 

the cost, size, weight and power losses of the overall D-STATCOM. Thus, the 

multilevel VSI (MVSI) is being exploited to replace the two-level VSI [11-13].

Since the MVSI is sufficiently capable of providing high voltage, the use of 

step-up transformer can be avoided [14-16]. As a result, the weight and cost of the 

hardware are reduced significantly. For example, with the absence of the transformer, 

the weight of 3-phase cascaded MVSI, rated at 6.6 kV/1 MVA can be reduced three to 

four times compared to its transformer counterpart [14, 17]. In [17], it is reported that 

the transformer and its ac inductor is about half of a 360 kVA D-STATCOM weight. 

Additionally, the efficiency of the system can be increased; in a typical D-STATCOM 

system, approximately 70% of overall power loss per MVA rating is attributed to the 

transformer [16].

For a proper exchange of reactive power with the electrical grid, an efficient 

control of the D-STATCOM is crucial [8]. Two approaches, namely the direct and 

indirect control are widely used [18-21]. For the former, the phase angle of the VSI 

output voltage (S) is the control variable, while the modulation index (Mi) is held 

constant at maximum value. Thus, the output voltage distortion (reflected by the THD 

value) can be kept minimum by imposing the maximum value of Mi. However, a rapid 

adjustment of reactive power is unachievable since the output voltage control using S 

is restricted by the time constants of the capacitor charging and discharging within the 

VSI.

This speed limitation is addressed by the direct control approach [15, 20, 22]. 

In this scheme, the capacitor voltages are fixed, while the control of reactive power is 

obtained by varying the amplitude of the VSI output voltage. The rapid response to the 

reactive power demand is achieved by changing the M i of the pulse width modulation 

(PWM) switching scheme [20]. Despite the improved performance, two problems are 

inherent for the direct control. First, the THD changes with the variation of Mi. At low
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M i, the harmonics profile of the output voltage is poor. Second, the high switching 

frequency of the PWM scheme increases the losses of the D-STATCOM [12].

The most popular modulation technique is the phase shifted PWM (PS-PWM) 

[23-25]. The concept is similar to the conventional sinusoidal PWM, whereby the 

switching pulses are generated by comparing a modulating and multiple carrier signals 

[16, 25]. For the MVSI topology, the PS-PWM switching is very complex due to the 

number of carriers that need to be phase-shifted in the correct sequence. For instance, 

to trigger the switches of a 3-phase 15-level MVSI, 29 carrier signals are required. In 

addition, the PS-PWM cannot directly eliminate the harmonics; thus it needs to be 

operated with high switching frequency to maintain the THD below the IEEE-519 

Standard (5%). Another modulation method that is used in the direct control of the D- 

STATCOM is the space vector modulation (SVM) [26, 27]. The scheme is based on 

vector calculation and switching states selection to achieve certain desired 

performance [27]. Despite the comparatively lower switching frequency that can be 

attained, the process of selecting switching states becomes increasingly complicated 

as the level of MVSI becomes higher [16].

On the other hand, the harmonic elimination PWM (HEPWM) [22, 28] is 

known for its superior harmonics profile and lower switching losses. Despite being an 

off-line technique (i.e. the angles are computed prior to execution and stored in a look­

up table), it is becoming a popular choice, particularly for high power applications. 

The difficulty of storing the angles in look-up table does not arise due to availability 

of low-cost memories. Therefore, HEPWM is a competitive alternative for the direct 

control scheme of the D-STATCOM especially when the MVSI topology is utilized. 

However, to implement HEPWM for high output voltage, a wide range of M i is 

necessary which in turn, requires more switching angles to be obtained. This is where 

the challenge in HEPWM is noted. The problem that arises in solving for the HEPWM 

angles for a wide Mi range is due to the large number of non-linear transcendental 

equations that govern them [23, 29]. In spite of this, several works that utilize HEPWM 

for direct control albeit for a lower number of angles, are reported [16, 21, 22, 30]. For 

example, a direct control scheme based HEPWM technique was proposed in [22] for 

10 MVAr /12 kV, 11-level (five angles) MVSI. In [30], authors presented a HEPWM
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strategy to minimize the THD of the output voltage of MVSI D-STATCOM. 

Furthermore, dc-dc converters have been used with HEPWM technique to control 

output voltage of single-phase five-level cascaded D-STATCOM [16]. However, in 

these methods [22, 30], the M i values are calculated for a maximum levels of 11-levels 

and for limited operation range; and for [16], a dc-dc converter is used for each H- 

bridge to produce a controllable dc input voltage, resulting in a complex and bulky 

system especially for high levels MVSI.

Understandably, due to the complexity in solving the equations for the 

HEPWM angles, no work is reported on the direct control for a MVSI D-STATCOM 

for more than 15-level. However, even with the 15-level, it is not possible to achieve 

the desired THD values below 5% over the entire modulation range. Thus, one of the 

objectives of this work is to increase the MVSI level in order to produce wider Mi 

range, while keeping the THD below the desired value.

1.2 Motivation

From the above overview, it is clear that the direct control strategy is favored 

for D-STATCOM due to its ability to compensate for the reactive power rapidly. 

Commonly, PS-PWM switching is used in the direct control of the MVSI D- 

STATCOM. However, to obtain a low THD of the output voltage of the D- 

STATCOM, the PS-PWM needs to be operated at high switching frequency. This 

results in high switching losses, hence lower efficiency. To overcome these limitations, 

the direct control scheme based on HEPWM is proposed. The main advantage of using 

HEPWM is the low THD; using a sufficiently high level MVSI, the THD below 5% 

over the entire operating range can be achieved. Furthermore, due to the lower 

switching frequency, HEPWM exhibits much lower switching loss compared to PS- 

PWM. In addition, for the available rating of power semiconductor switches, it is not 

difficult to realize D-STATCOM for direct connection to 11 kV distribution network 

(or higher voltage) using MVSI. This eliminates the bulky and lossy step-up 

transformer.
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1.3 Objectives of the Research

By considering the aforementioned background and motivation, the objectives 

of this research are formulated as follows:

i) to propose a direct control scheme, which is based on HEPWM 

switching for 23-level MVSI D-STATCOM.

ii) to evaluate the performance of the proposed control scheme in terms of 

harmonics and power losses against the PS-PWM methods.

iii) to test the dynamic performance of the HEPWM based D-STATCOM 

under sag and swell problems.

The HEPWM angles are computed using a soft computing method, known as 

the differential evolution (DE). It is a powerful search and optimization method used 

to solve highly correlated and complicated non-linear problems. For validation, a ± 6.5 

MVAr/11 kV D-STATCOM system, modelled in Simulink and PLECS software is 

used.

1.4 Scope of the Research

The scope and limitations of this research are as follows:

i) The angles trajectories are computed offline for wide range of M i using 

DE.

To ensure that the THD is kept below 5%, a 23-level MVSI is required, 

which in turn, requires the number of HEPWM angles to be increased to 

eleven. The maximum achievable range of Mi is 5.40 < M i < 8.15 (i.e. HEPWM 

allows over modulation operation), with an incremental step of 0.01. The 0.01 

step for M i can be considered very accurate; it gives a total of 273 values for 

the given range of Mi.
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ii) The voltages across the capacitors are fixed by using floating dc 

sources.

In a normal STATCOM, a capacitor bank is used to maintain the dc 

voltage of the VSI. For cascaded multilevel VSI, the number of the capacitors 

is proportional to the number of the synthesized levels. Due to different losses 

of H-bridge units, measurement error in the voltage and current sensors and the 

tolerance of the passive elements, the capacitor voltages may be unbalanced. 

Improper balancing among the capacitors affects the operation of the HEPWM 

method. In this work, for simplicity, the capacitor voltages are kept constant 

using floating dc sources similar to [31].

iii) Simulation using Simulink/Matlab and PLECS software.

To validate the effectiveness of the proposed control scheme, the D- 

STATCOM is modelled in Simulink/MATLAB. The pre-calculated switching 

angles are stored in look-up table. In addition, the PLECS software (which is 

integrated with Simulink) is used for the calculation of the thermal losses.

iv) Performance validation: comparison between HEPWM and PS-PWM 

To validate the performance of the proposed HEPWM switching, a

comparison is made with PS-PWM for the same 23-level MVSI D-STATCOM 

was steady state. In addition, the dynamics performance of the HEPWM based 

direct control is tested under sag and swell problems.

1.5 Significance of the Research

The advantages of the proposed HEPWM D-STATCOM can be summarized

as:

i) Fast reactive power compensation.

The utilization of direct control scheme instead of the indirect control 

scheme allows for fast compensation of the reactive power [9, 18]. The control
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of reactive power is achieved by using HEPWM switching to vary the 

amplitude of the VSI output voltage using Mi.

ii) Superior harmonic performance and low switching losses.

The proposed HEPWM switching for 23-level MVSI D-STATCOM 

allows the elimination of the lower order and the triplens harmonics from the 

line-to-line output voltage. Thus, very low THD of the output voltage 

waveform is obtained. In addition, due to the low switching frequency of the 

HEPWM, lower switching loss results.

iii) Reduction in the size and cost of the D-STATCOM.

This work presents a D-STATCOM based on 23-level cascaded MVSI 

which allow the elimination of the bulky and costly step up transformer used to 

connect the D-STATCOM to distribution level. In addition, due to the good 

harmonics performance of the output voltage of the proposed D-STATCOM, a 

smaller series-coupling inductor can be used, hence the lower size of the overall 

system.

1.6 Thesis Outline

The thesis is comprised of five chapters. The remaining chapters are organized 

as follows:

i) Chapter 2 is a review on the topologies, control and modulation

methods used for D-STATCOM. It provides the important background 

knowledge regarding the research. The chapter starts by comparing the 

STATCOM to the other types of FACTS devices. Then, the MVSI 

topologies, control strategies and modulation techniques utilized for 

STATCOM are presented alongside a comparative analysis between 

them. The common PWM methods (i.e. PS-PWM and HEPWM) used 

for the direct control of STATCOM are presented alongside a critical
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discussion between them. It is shown that HEPWM is a competitive 

alternative for the direct control scheme of the D-STATCOM.

ii) Chapter 3 begins by introducing the concept of a direct control scheme 

based on HEPWM switching for a 23-level MVSI D-STATCOM. Then 

a detailed outline of the design considerations and control of the 

proposed system is provided. The methods for solving the HEPWM 

equations, the formulation of HEPWM equations, the concept of DE 

and its application on solving the eleven switching angles (to achieve 

5.40 -  8.15 p.u. Mi range) are discussed and the angles trajectories for 

23-level MVSI are shown. In addition, the selection of the passive 

elements is explained alongside a discussion about its effect on the 

operation of the STATCOM. The simulation of the direct control based 

PS-PWM switching for 23-level MVSI D-STATCOM is also 

presented. For both systems (i.e. HEPWM and PS-PWM), the 

generation of the switching pulses is described in details.

iii) Chapter 4 examines the performance of the HEPWM based direct 

control scheme alongside a detailed comparison with the traditional PS- 

PWM switching in steady state. Their performance is benchmarked 

using ± 6.5 MVAr/11 kV D-STATCOM modelled in MATLAB- 

Simulink and PLECS software. Furthermore, dynamic performance of 

the proposed HEPWM D-STATCOM is tested under voltage sag and 

swell cases and a comparative discussion is made with the indirect 

control scheme.

iv) Chapter 5 concludes the work and provides a suggestions and directions 

for the future work.
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