Universiti Teknologi Malaysia Institutional Repository

Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application

Mani, Mohan Prasath and Jaganathan, Saravana Kumar and Mohd. Faudzi, Ahmad Athif and Sunar, Mohd. Shahrizal (2018) Electrospun polyurethane nanofibrous composite impregnated with metallic copper for wound-healing application. 3 Biotech, 8 (8). p. 327. ISSN 2190-572X


Official URL: http://dx.doi.org/10.1007/s13205-018-1356-2


In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)—179 ± 3.606 s and partial thromboplastin time (PT)—105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT—147.7 ± 3.512 s and PT—84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.

Item Type:Article
Uncontrolled Keywords:Bio compatibility, Copper sulphate
Subjects:Q Science > QH Natural history > QH301 Biology
Divisions:Biosciences and Medical Engineering
ID Code:84782
Deposited By: Widya Wahid
Deposited On:27 Feb 2020 04:58
Last Modified:27 Feb 2020 04:58

Repository Staff Only: item control page