CROWDING IN MINA BASED ON PILGRIMS’ PERCEPTION OF SAFETY AND COMFORT IN HAJJ

ALSOLAMI, BADR MOHAMMED A.

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Built Environment and Surveying
Universiti Teknologi Malaysia

March 2019
In the Name of Allah, the Compassionate, the Merciful. Praise be to Allah, Lord of the Universe, and Peace and Prayers be upon His Final Prophet and Messenger.

To the pilgrims and visitors of Makkah.

To my Family.

This thesis is dedicated to them.
ACKNOWLEDGEMENT

Praise is to Allah, the Lord of the world. My profound gratitude is to Almighty Allah first, by Whose will and the power this thesis came into being.

I wish to express my deepest appreciation to all those who helped me, in one way or another, to complete this thesis. Special thanks to my thesis supervisor, Associate Prof. Dr. Mohamed Rashid bin Embi for his guidance and support during the research journey. Also, to the faculty of built environment staff, both academic and administrative for their kind support.

Special appreciation also goes to my family. I appreciate your patience and understanding throughout this PhD journey.

My gratitude to The government of Saudi Arabia, Umm Al-Qura University, the Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research and GIS Technology Innovation Centre for encouragements, financial and logistic supports.
ABSTRACT

Crowding perception has been studied in various settings to alleviate the effect of the crowded conditions on participants’ well-being. These include festivals, outdoor recreation, tourism and retail settings. However, very few researches have addressed the crowding perception in religious settings that include a large number of populations such as during the Hajj. More than two million pilgrims perform their Hajj every year. The Hajj process involves staying at the holy site of Mina from four to five days. In Mina, the pilgrims require a peaceful atmosphere to perform their Hajj rituals. A large number of pilgrims and Mina’s spatial constraints led to crowded conditions that affected the pilgrims’ peaceful atmosphere and created serious safety and comfort concerns. It appears that little research consideration has been given to alleviate the impact of the crowded conditions on the pilgrims. Therefore, the research aim is to establish parameters that affect pilgrims’ levels of crowding perception toward enhancing their perception of safety and comfort in Mina during the Hajj. Accordingly, a systematic literature review was employed to develop a conceptual framework that considers the possible influential factors that might affect the pilgrims’ and the effect of their perceived crowding on perceived levels of safety and comfort in Mina. Then, this research used a quantitative research design and data were randomly collected from 1243 pilgrims of seven pilgrim groups representing seven Hajj establishments. The data were analysed using the SPSS and AMOS software. The findings revealed that for all pilgrims, one socio-demographic factor (education), one personal factor (expectation), two social factors (provision of information and activities) and three physical factors (routing strategies, disorientation causes and coding and signage) are observed to have significant impact on the pilgrims’ crowding perception, which significantly affects their levels of perceived safety and comfort in Mina. The findings also indicated that the impact of influential factors on the pilgrims’ crowding perception varies according to their pilgrim group. Based on the findings, this research recommended eight parameters that affect the pilgrims’ levels of crowding perception to enhance their levels of perceived safety and comfort in Mina. Furthermore, this thesis suggested some theoretical and practical implications as well as important avenues for future research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1
- 1.1 Research Background 1
- 1.2 Problem Statement 3
- 1.3 Research Gap 6
- 1.4 Research Aim 8
- 1.5 Research Objectives 8
- 1.6 Research Questions 8
- 1.7 Research Methodology 9
- 1.8 Scope of the Study 10
- 1.9 Significant of the Study 11
- 1.10 Structure of the Thesis 12

CHAPTER 2 AN OVERVIEW OF THE HAJJ 15
- 2.1 Introduction 15
- 2.2 The Islamic Pilgrimage: the Hajj 15
 - 2.2.1 Significance of the Hajj 16
 - 2.2.2 Socio-Cultural Impact of the Hajj 18
 - 2.2.3 Economic Impact of the Hajj 21
 - 2.2.4 The Hajj Management 24
 - 2.2.5 Steps of the Hajj 28
2.3 Study Site: Mina

- **2.3.1 Spatial Characteristics of Mina**
- **2.3.2 Pilgrims Population in Mina**
- **2.3.3 Crowding Accidents in Mina**

2.4 Summary

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>THE CROWDING PERCEPTION</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>The Crowding Phenomena</td>
<td>41</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Distinction between Density and Crowding</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Crowding Perception</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Perceived Crowding Definitions</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Perceived Crowding Measurements</td>
<td>46</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Dimensions of Perceived Crowding</td>
<td>47</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Perceived Human Crowding</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Perceived Spatial Crowding</td>
<td>50</td>
</tr>
</tbody>
</table>

3.4 Factors influencing Crowding Perception

- **3.4.1 Socio-Demographic Factors**
 - **3.4.1.1 Gender**
 - **3.4.1.2 Age**
 - **3.4.1.3 Living place**
 - **3.4.1.4 Education**
 - **3.4.1.5 Experience**
 - **3.4.1.6 Marital status**
 - **3.4.1.7 Length of Stay**
 - **3.4.1.8 Entry Mode**

- **3.4.2 Personal Factors**
 - **3.4.2.1 Expectations**
 - **3.4.2.2 Control**
 - **3.4.2.3 Sociability**
 - **3.4.2.4 Mood**

- **3.4.3 Social Factors**

viii
3.4.3.1 Interpersonal Similarity 81
3.4.3.2 Provision of Information 85
3.4.3.3 Activities 88

3.4.4 Physical Factors 92
3.4.4.1 Orientation strategies 94
3.4.4.2 Route strategies 97
3.4.4.3 Spatial anxiety 100
3.4.4.4 Disorientation causes 103
3.4.4.5 Coding and signage 106

3.5 Impacts of Perceived Crowding 109
3.5.1 Impact of Perceived Crowding on Perceived Safety 116
3.5.2 Impact of perceived crowding on perceived comfort 117

3.6 Summary 118

CHAPTER 4 METHODOLOGY 121
4.1 Introduction 121
4.2 Research Paradigm 122
4.3 Research Design 125
4.4 Sampling Design and Procedure 131
4.4.1 Pilgrims’ Population 131
4.4.2 Sample Size 133
4.4.3 Sampling Strategy 136
4.5 Research Instrument 138
4.6 Measurement Scale 140
4.6.1 Characteristics of the Pilgrims 140
4.6.2 Personal Factors 142
4.6.3 Social Factors 143
4.6.4 Physical Factors 144
4.6.5 Crowding Perception 146
4.6.6 Perceived Safety and Comfort 147
4.7 Validity of the Instrument
 4.7.1 Pre-test
 4.7.2 Pilot Study
4.8 Data collection
 4.8.1 Logistics
 4.8.2 Team
 4.8.3 Materials
 4.8.4 Planning Data Collection
 4.8.5 The Field Survey
4.9 Data Screening
 4.9.1 Case Screening
 4.9.2 Variable Screening
4.10 Measurements Validity and Reliability
4.11 Factor Analysis
 4.11.1 Exploratory Factor Analysis
4.12 Structure Equation Modeling (SEM)
 4.12.1 Measurement Model Development in SEM
 4.12.2 Maximum Likelihood Estimation in SEM
 4.12.3 Statistical Criteria for Assessing the Validity of the Measurement Models
 4.12.4 Convergent Validity
4.13 Summary

CHAPTER 5 RESULTS AND DISCUSSIONS

5.1 Introduction
5.2 Descriptive Findings
 5.2.1 Socio-Demographic Descriptive
 5.2.2 Influential Factors Descriptive Findings
 5.2.2.1 Personal Factors Descriptive
 5.2.2.2 Social Factors Descriptive Findings
 5.2.2.3 Physical Factors Descriptive Findings
 5.2.3 Crowding Perception Descriptive
 5.2.4 Perceived Safety and Comfort Descriptive
5.3 Measurement Model for Factors Affecting Crowding Perception

5.3.1 One Factor Congeneric Measurement Models for Personal Factors

5.3.1.1 Expectation

5.3.1.2 Control

5.3.1.3 Sociability

5.3.1.4 Mood

5.3.1.5 Measurement Model of Personal Factors

5.3.1.6 Personal Factors as a Second-Order Construct

5.3.2 One-Factor Congeneric Measurement Models for Social Factors

5.3.2.1 Interpersonal Similarity

5.3.2.2 Provision of Information

5.3.2.3 Activities

5.3.2.4 Measurement Model of Social Factors

5.3.2.5 Social Factors as a Second-Order Construct

5.3.3 One-Factor Congeneric Measurement Models for Physical Factors

5.3.3.1 Orientation Strategies

5.3.3.2 Routing Strategies

5.3.3.3 Spatial Anxiety

5.3.3.4 Disorientation Causes

5.3.3.5 Coding and Signage System

5.3.3.6 Measurement Model for Physical Factors

5.3.3.7 Physical Factors as a Second-Order Construct

5.4 Measurement Model for Crowding Perception Levels in Mina

5.5 Overall Confirmatory Factor Analysis (CFA) Measurement Model

5.5.1 Non-Response Bias Test
5.5.2 Overall Confirmatory Factor Analysis (CFA) Compact Measurement Model 228

5.6 Structural Model Analysis of Factors Effect on Perceived Crowding 231

5.6.1 Socio-Demographic Factors Effect on Perceived Crowding Structural Model 232

5.6.2 Personal, Social, and Physical Factors Effect on Perceived Crowding Structural Model 234

5.6.3 Factors Effect on Perceived Crowding 236

5.6.3.1 Southeast Asia Pilgrims’ Group Factors Effect on Perceived Crowding 238

5.6.3.2 South Asia Pilgrims’ Group Factors Effect on Perceived Crowding 240

5.6.3.3 Iran Pilgrims’ Group Factors Effect on Perceived Crowding 242

5.6.3.4 African Pilgrims’ Group Factors Effect on Perceived Crowding 245

5.6.3.5 Arab Pilgrims’ Group Factors Effect on Perceived Crowding 247

5.6.3.6 Interior Pilgrims’ Group Factors Effect on Perceived Crowding 249

5.6.3.7 Turkey Pilgrims’ Group Factors Effect on Perceived Crowding 251

5.7 Structural Model Analysis of Perceived Crowding Effect on Safety and Comfort Levels 253

5.7.1 Perceived Crowding Effect on Safety and Comfort Levels 253

5.7.2 Influential Factors and Perceived Crowding Effect on Safety and Comfort Levels 255

5.7.3 Socio-Demographic, Influential Factors and Perceived Crowding Effect on Safety and Comfort Levels 258

5.7.3.1 Perceived Crowding Effect on Safety and Comfort Levels Among the Southeast Asian Pilgrims 260
5.7.3.2 Perceived Crowding Effect on Safety and Comfort Levels Among the South Asian Pilgrims 263

5.7.3.3 Perceived Crowding Effect on Safety and Comfort Levels Among Iranian Pilgrims 267

5.7.3.4 Perceived Crowding Effect on Safety and Comfort Levels Among African Pilgrims 270

5.7.3.5 Perceived Crowding Effect on Safety and Comfort Levels Among the Arab Pilgrims 272

5.7.3.6 Perceived Crowding Effect on Safety and Comfort Levels Among Interior Pilgrims 276

5.7.3.7 Perceived Crowding Effect on Safety and Comfort Levels Among the Turkish Pilgrims 279

5.8 Structural Model analysis of Recommended Parameters that Effect Pilgrims’ Crowding Perception 282

5.8.1 Parameters that Effect All Pilgrims Crowding Perception 282

5.8.2 Parameters that Effect the Southeast Asian Pilgrims’ Crowding Perception 287

5.8.3 Parameters that Effect the South Asian Pilgrims’ Crowding Perception 288

5.8.4 Parameters that Effect Iranian Pilgrims’ Crowding Perception 290

5.8.5 Parameters that Effect the African Pilgrims’ Crowding Perception 291

5.8.6 Parameters that Effect the Arab Pilgrims’ Crowding Perception 292

5.8.7 Parameters that Effect the Interior Pilgrims’ Crowding Perception 294

5.8.8 Parameters that Effect the Turkish Pilgrims’ Crowding Perception 296

5.9 Summary 297

CHAPTER 6 CONCLUSION 299
6.1 Introduction 299
6.2 Highlights of the Chapters 299
6.3 Summary of Findings 300
 6.3.1 Objective One: Identify Potential Factors to Affect The Pilgrims’ Perceived Crowding 301
 6.3.2 Objective Two: The Impact of Influential Factors on the Pilgrims’ Perceived Crowding 302
 6.3.2.1 Impact of Influential Factors on Perceived Crowding Among All Pilgrims 302
 6.3.2.2 Impact of Influential Factors on Perceived Crowding Across the Seven Pilgrim Groups 304
 6.3.3 Objective Three: Perceived Crowding Effect on Safety and Comfort Levels 305
 6.3.3.1 Perceived Crowding Effect on Safety and Comfort Levels Among All Pilgrims 306
 6.3.3.2 Perceived Crowding Effect on Safety and Comfort Levels Across the Seven Pilgrims’ Groups 307
 6.3.4 Objective Four: Recommended Parameters that Effect the Pilgrims’ Crowding Perception in Mina 308
 6.3.4.1 Parameters that Effect the all Pilgrims’ Crowding Perception in Mina 309
 6.3.4.2 Parameters that Effect Crowding Perception Across the Seven Pilgrims’ Groups in Mina 310
6.4 Contributions of the Research 314
 6.4.1 Theoretical Implications 315
 6.4.2 Practical Implications 316
 6.4.3 Urban and Architectural Design Implications 319
6.5 Limitations of the Research 321
6.6 Direction for Future Research 322
REFERENCES 324
LIST OF PUBLICATIONS 380
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Names, widths and flows of roads and pathways at Mina</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Comparison between the Hajj’s holy sites in terms of the number of days, rituals, and areas.</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Land use in Mina.</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The measured and estimated number of pilgrims and their annual growth rate between 2000 and 2030.</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Deadliest recorded human stampeding incidents over the past 100 years. The stampedes in Mina amount to five of the top ten worst ones.</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Death toll caused by crowding accidents in Mina between 2000 and 2016.</td>
<td>38</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Key studies examined the impact of expectation on crowding perception.</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Summary of studies examining the impact of perceived control on crowding perception.</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Key studies examined the impact of Sociability on crowding perception</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Findings of key studies on the impact of mood in the crowding research.</td>
<td>79</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Items employed to measure interpersonal similarity.</td>
<td>83</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Key studies examining the impact of interpersonal similarity.</td>
<td>84</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Key studies examining the impact of the provision of information.</td>
<td>87</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Findings of prior studies that examined the impact of activities.</td>
<td>91</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Factor loading for items used to measure orientation strategies.</td>
<td>95</td>
</tr>
</tbody>
</table>
Table 3.10: Summary of key studies related to orientation strategies and wayfinding efficiency.
Table 3.11: Factor loading for items used to measure route strategies.
Table 3.12: Summary of key studies related to route strategies and wayfinding competence.
Table 3.13: Factor loading for the situations used as items to measure spatial anxiety.
Table 3.14: Summary of the key studies related to spatial anxiety and wayfinding performance.
Table 3.15: Summary of key studies examining the effect of coding and signage on wayfinding performance.
Table 3.16: Summary of crowding impacts in a festival and event contexts.
Table 3.17: Summary of studies of the crowding impact conducted in outdoor recreational spaces.
Table 3.18: Summary of the crowding impact on the factors in tourism-related studies.
Table 3.19: Summary of studies including the impact of crowding in retail and shopping contexts.
Table 4.1: Summary and comparison of the main research paradigms used in the social and behavioural sciences.
Table 4.2: The research approaches and layers.
Table 4.3: Estimated number of pilgrims in 2015.
Table 4.4: Number of pilgrims attending the Hajj since 2007.
Table 4.5: Tawafa establishments and their number of pilgrims during the Hajj in 2010.
Table 4.6: Sample size of a known population at a 95 percent confidence level.
Table 4.7: Distribution of the sample size according to the pilgrim groups.
Table 4.8: Questions related to the pilgrim's socio-demographic factors.
Table 4.9: List of items developed to measure the personal factors.
Table 4.10: Items adapted to measure interpersonal similarity.
Table 4.11: Items developed to measure provision of information and activities.

Table 4.12: Adapted items used to measure orientation strategies.

Table 4.13: Adapted items used to measure the route strategies and spatial anxiety.

Table 4.14: Adapted items used to measure the disorientation causes and signage and coding.

Table 4.15: Items used to measure crowding perception.

Table 4.16: Adapted items used to measure perceived safety and comfort.

Table 4.17: An example of the new items’ scale with statements that were used to measure the personal and social factors.

Table 4.18: Pilot survey results

Table 4.19: Number of nominators, their language abilities and assigned pilgrim group.

Table 4.20: Number of questionnaires for each language based on the pilgrim groups.

Table 4.21: Data collection and time planning.

Table 4.22: Overview of the steps that were taken to examine the data.

Table 4.23: Normality test result.

Table 4.24: Multicollinearity assessment result.

Table 4.25: Cronbach's Alpha for personal, social and physical factors.

Table 4.26: Results of the KMO and Bartlett's test.

Table 4.27: Summary of data screening and preparation

Table 4.28: Relevant issues for theoretical SEM model development.

Table 4.29: Summary of goodness-of-fit indices.

Table 5.1: Descriptive findings of the socio-demographic factors.

Table 5.2: Descriptive findings of expectation.

Table 5.3: Descriptive findings of control.

Table 5.4: Descriptive findings of sociability.

Table 5.5: Descriptive findings of mood.

Table 5.6: Descriptive findings of interpersonal similarity.

Table 5.7: Descriptive findings of provision of information.

Table 5.8: Descriptive findings of activities.
Table 5.9: Descriptive findings of the orientation strategies. 189
Table 5.10: Descriptive findings of routing strategies. 190
Table 5.11: Descriptive findings of spatial anxiety. 190
Table 5.12: Descriptive findings of disorientation causes. 191
Table 5.13: Descriptive findings of coding and signage. 192
Table 5.14: Descriptive findings of crowding perception. 193
Table 5.15: Descriptive findings of perceived safety. 195
Table 5.16: Descriptive findings of perceived comfort. 196
Table 5.17: Statistics for the measurement model of personal factors. 203
Table 5.18: Statistics for the measurement model of social factors. 210
Table 5.19: Modification indices for routing strategies (RS) proposed model. 214
Table 5.20: Modification indices for spatial anxiety (SA) proposed model. 216
Table 5.21: Statistics for the measurement model of physical factors. 222
Table 5.22: Fit values the proposed measurement model for the overall crowding perception. 226
Table 5.23: Statistics for the proposed measurement model for the overall crowding perception. 227
Table 5.24: Fit values of the CLF assessment. 228
Table 5.25: Statistics for the compact model for overall crowding perception. 230
Table 5.26: Structural paths for impact of the socio-demographic factors on crowding perception. 233
Table 5.27: Structural paths for the impact of personal, social and physical factors on crowding perception. 235
Table 5.28: Structural paths for impact of Socio-demographic, personal, social and physical factors on crowding perception. 238
Table 5.29: Structural paths for the impact of all the factors on crowding perception among the Southeast Asian Pilgrim group. 240
Table 5.30: Structural paths for the impact of all the factors on crowding perception among the South Asian pilgrim group. 242
Table 5.31: Structural paths for the impact of all the factors on crowding perception among the Iranian pilgrim group. 244
Table 5.32:	Structural paths for the impact of all the factors on crowding perception among the African pilgrim group.	246
Table 5.33:	Structural paths for the impact of all the factors on crowding perception among the Arab pilgrim group.	248
Table 5.34:	Structural paths for the impact of all the factors on crowding perception among the interior pilgrim group.	250
Table 5.35:	Structural paths for the impact of all the factors on crowding perception among the Turkish pilgrim group.	252
Table 5.36:	Structural paths for the impact of crowding perception on perceived safety and comfort.	255
Table 5.37:	Structural paths for the impact of the influential factors and crowding perception on perceived safety and comfort.	257
Table 5.38:	Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort.	259
Table 5.39:	Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the Southeast Asian pilgrim group.	262
Table 5.40:	Structural paths for impact of Socio-demographic factors, influential factors and crowding perception on perceived safety and comfort among South Asia pilgrims group.	265
Table 5.41:	Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the Iranian pilgrim group.	268
Table 5.42:	Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the African pilgrim group.	271
Table 5.43:	Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the Arab pilgrim group.	274
Table 5.44: Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the interior pilgrim group.

Table 5.45: Structural paths for the impact of the socio-demographic and influential factors and crowding perception on perceived safety and comfort among the Turkish pilgrim group.

Table 5.46: Structural paths of the recommended parameters that affect all pilgrim groups’ crowding perception.

Table 5.47: Structural paths of the recommended parameters that affect the Southeast Asian pilgrim group’s crowding perception.

Table 5.48: Structural paths of the recommended parameters that affect the South Asian pilgrim group’s crowding perception.

Table 5.49: Structural paths of the recommended parameters that affect the Iranian pilgrim group’s crowding perception.

Table 5.50: Structural paths of the recommended parameters that affect the African pilgrim group’s crowding perception.

Table 5.51: Structural paths of the recommended parameters that affect the Arab pilgrim group’s crowding perception.

Table 5.52: Structural paths of the recommended parameters that affect the interior pilgrim group’s crowding perception.

Table 5.53: Structural paths of the recommended parameters that affect the Turkish pilgrim group’s crowding perception.

Table 6.1: The identified influential factors according to their domains.

Table 6.2: The impact of the influential factors on the perceived crowding among all pilgrims.

Table 6.3: The impact of the influential factors on perceived crowding across the seven pilgrim groups.

Table 6.4: The impact of the influential factors and crowding perception on perceived safety and comfort among all pilgrims.

Table 6.5: The impact of crowding perception on perceived safety and comfort levels across the seven pilgrim groups.
Table 6.6: The impact of the influential factors on crowding perception while influencing the perceived safety and comfort across the seven pilgrim groups.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Eleven roads and pathways leading to the Jamarat Bridge become crowded during the Hajj, especially when they approach the Jamarat area.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Thesis chapters and the flow of research.</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The Hajj holy locations in Makkah.</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The Ministry of Hajj and its system of the governmental and non-governmental sectors working in the field of Haj.</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The Hajj steps.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Mina topographic map shows Mina boundaries (in red colour).</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>The descriptions of the tents in Mina.</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The Jamarat bridge at Mina.</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>The location of the stampede accident in 2015 caused by the converging of pilgrims' flows from two directions.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Perceived crowding scale designed by Heberlein & Vaske (1977).</td>
<td>47</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Conceptual Framework of research</td>
<td>120</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Research design process.</td>
<td>126</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The deductive research process. Source (adapted from): Creswell and Creswell (2017).</td>
<td>129</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Sampling strategy.</td>
<td>138</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Locations of the pilgrims' group camps in Mina.</td>
<td>155</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Overall summary of missing values.</td>
<td>161</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Six-Stage Process for Structural Equation Modelling.</td>
<td>171</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Percentage of responses according to their groups.</td>
<td>178</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>The proposed model for expectation (PFE).</td>
<td>197</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>The proposed model for control (PFC).</td>
<td>198</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>The proposed model for sociability (PFS).</td>
<td>199</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>The proposed model for mood (PFMD).</td>
<td>201</td>
</tr>
</tbody>
</table>
Figure 5.6: The measurement model for personal factors.

Figure 5.7: Second-order confirmatory factor analysis measurement model for personal factors.

Figure 5.8: The proposed model for interpersonal similarity (SFIS).

Figure 5.9: The proposed model for provision of information (SFPI).

Figure 5.10: The proposed model for activities (SFA).

Figure 5.11: The measurement model for social factors.

Figure 5.12: Second-order confirmatory factor analysis measurement model for the social factors.

Figure 5.13: The proposed model for orientation strategies (OS).

Figure 5.14: The proposed model for routing strategies (RS).

Figure 5.15: The re-specified model for routing strategies (RS).

Figure 5.16: The proposed model for spatial anxiety (SA).

Figure 5.17: The re-specified model for spatial anxiety (SA).

Figure 5.18: The proposed model for disorientation causes (DC).

Figure 5.19: The final re-specified model for disorientation causes (DC).

Figure 5.20: The proposed model for coding and signage (CS).

Figure 5.21: The final re-specified model for coding and signage (CS).

Figure 5.22: The measurement model for physical factors.

Figure 5.23: Second-order confirmatory factor analysis measurement model for the physical factors.

Figure 5.24: The proposed model for crowding perception (LPC).

Figure 5.25: Compact model for the overall crowding perception.

Figure 5.26: Steps taken to analyse the structural model.

Figure 5.27: Structural model of the relationship between Socio-demographic factors and crowding perception.

Figure 5.28: Structural model of the relationship between the personal, social and physical factors and crowding perception.

Figure 5.29: Structural model of the relationship between the socio-demographic factors, personal, social, physical factors and crowding perception.

Figure 5.30: Structural model of relationship between the Socio-demographic, personal, social and physical factors and crowding perception among Southeast Asia Pilgrim group.
Figure 5.31: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the South Asian pilgrim group.

Figure 5.32: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the Iranian pilgrim group.

Figure 5.33: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the African pilgrim group.

Figure 5.34: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the Arab pilgrim group.

Figure 5.35: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the interior pilgrim group.

Figure 5.36: Structural model of the relationship between the socio-demographic, personal, social, physical factors and crowding perception among the Turkish pilgrim group.

Figure 5.37: Steps of the structural analysis of perceived crowding effect on safety and comfort levels.

Figure 5.38: Structural model of the relationship between crowding perception and perceived safety and comfort.

Figure 5.39: Structural model of the relationship between the influential factors, crowding perception and perceived safety and comfort.

Figure 5.40: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort.

Figure 5.41: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the Southeast Asian pilgrim group.

Figure 5.42: Structural model of the relationship between the socio-demographic and influential factors, crowding perception
and perceived safety and comfort among the South Asian pilgrim group.

Figure 5.43: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the Iranian pilgrim group.

Figure 5.44: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the African pilgrim group.

Figure 5.45: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the Arab pilgrim group.

Figure 5.46: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the interior pilgrim group.

Figure 5.47: Structural model of the relationship between the socio-demographic and influential factors, crowding perception and perceived safety and comfort among the Turkish pilgrim group.

Figure 5.48: Structural model of the recommended parameters that affect all pilgrim groups’ crowding perception.

Figure 5.49: Structural model of the recommended parameters that affect the Southeast Asian pilgrim group’s crowding perception.

Figure 5.50: Structural model of the recommended parameters that affect the South Asian pilgrim group’s crowding perception.

Figure 5.51: Structural model of the recommended parameters that affect the Iranian pilgrim group’s crowding perception.

Figure 5.52: Structural model of the recommended parameters that affect the African pilgrim group’s crowding perception.

Figure 5.53: Structural model of the recommended parameters that affect the Arab pilgrim group’s crowding perception.
Figure 5.54: Structural model of the recommended parameters that affect the interior pilgrims’ crowding perception.

Figure 5.55: Structural model of the recommended parameters that affect the Turkish pilgrim group’s crowding perception.

Figure 6.1: Conceptual framework identifying the factors that might influence the pilgrims’ crowding perception, which influences their perceived safety and comfort levels.

Figure 6.2: Recommended parameters to control the pilgrims’ perceived levels of crowding and enhance their perceived safety and comfort levels in Mina.

Figure 6.3: Recommended parameters to control the pilgrims’ perceived levels of crowding among the Southeast Asian pilgrims’ group to enhance their perceived safety and comfort levels in Mina.

Figure 6.4: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the South Asian pilgrim group to enhance their perceived safety and comfort levels in Mina.

Figure 6.5: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the Iranian pilgrim group to enhance their perceived safety and comfort levels in Mina.

Figure 6.6: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the African pilgrim group to enhance their perceived safety and comfort levels in Mina.

Figure 6.7: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the Arab pilgrim group to enhance their perceived safety and comfort levels in Mina.

Figure 6.8: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the interior pilgrim group to enhance their perceived safety and comfort levels in Mina.
Figure 6.9: Recommended parameters for controlling the pilgrims’ perceived levels of crowding among the Turkish pilgrim group to enhance their perceived safety and comfort levels in Mina.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Crowding perception: A case study of developed systematic literature review procedure with multiple software programs as management and synthesis tools</td>
<td>355</td>
</tr>
<tr>
<td>Appendix B</td>
<td>The questionnaire used to collect the data from pilgrims.</td>
<td>358</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Pictures of nominators attended a workshop and training on how to interview pilgrims and how to select the pilgrims. Also the pictures show the nominators while collecting the data.</td>
<td>365</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Results of principal components analysis.</td>
<td>367</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Results of rotated component matrix.</td>
<td>368</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Detailed descriptive findings of personal factors.</td>
<td>369</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Detailed descriptive findings of social factors.</td>
<td>370</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Detailed descriptive findings of physical factors.</td>
<td>371</td>
</tr>
<tr>
<td>Appendix I</td>
<td>The re-specified models for disorientation causes (DC).</td>
<td>373</td>
</tr>
<tr>
<td>Appendix J</td>
<td>The overall measurement model.</td>
<td>374</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Finding of non-response bias test</td>
<td>375</td>
</tr>
<tr>
<td>Appendix L</td>
<td>Brief definition of each of physical features by Nunes and Vale (2015).</td>
<td>376</td>
</tr>
<tr>
<td>Appendix M</td>
<td>A summary of objective two’s findings.</td>
<td>378</td>
</tr>
<tr>
<td>Appendix N</td>
<td>A summary of objective three’s findings.</td>
<td>379</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Crowding could be said to be a subjective and psychological state. This state can be motivated when the available space is less than an individually preferred space (Stokols, 1972b). Furthermore, it is generally a negative perceptual experience in situations where high-density is associated with spatial limitation (Rustemli et al., 1992). The socio-psychological effects of crowding can be immediate or long-term, direct as well as indirect, and harmful (Marshy, 1999).

In a crowded situation, the perceived levels of crowding vary among individuals. Some individuals may feel crowded whereas others could feel uncrowded even though they are in the same setting. Environmental psychologists found that many factors have led to such variations in the perception of crowding (Gharaei et al., 2012; Gifford, 2007; Whiting and Nakos, 2008). These include personal (such as expectation and affiliation), social (interpersonal similarity) and physical (in the case of density, place variation and weather) factors (Gharaei et al., 2012). This means that the effect of crowding can be predicted in any situation. For example, according to Hutton, et al. (2013), understanding particular cultures and their possible predispositions can result in a better understanding of individual motivation, and how that might impact on their behaviour at a certain event.

Understanding a crowd is beneficial for event management authorities, planners and designers (Turris et al., 2014). It contributes to the overall comprehension of crowds and crowd behaviour. This, in turn, might increase the safety and comfort for the event participants. Safety and comfort are crucial in any event, especially in events characterised as mass gatherings.
At mass gathering events, the effects of overcrowding have become a major concern for participants, organisers and scientists in terms of crowd safety. One such concern is that large crowds often lead to particular types of accidents. It has been argued that an increase in crowd population is associated with a rise in the potential of certain accidents and incidents, such as tramplings, stampedes and deaths (Illiyas et al., 2013; Hsieh et al., 2009; Turris et al., 2014). Reviewing the history of mass gatherings has shown that there have been fatal crowd disasters (Soomaroo and Murray, 2012; Hsieh et al., 2009). Some of these have resulted in a high number of deaths. For example, a stampede in 1982 at a stadium in Moscow claimed 340 lives. Similarly, another stampede in Yemen in 2006, also at a stadium, resulted in 51 deaths (Krausz and Bauckhage, 2012). The disaster of 2010 in Germany occurred at a musical event and resulted in 21 people dying, with more than 500 injured (Krausz and Bauckhage, 2012). Furthermore, occasional stampedes have occurred in Mina, during the Hajj. Since 1987, there have been more than nine crowd accidents, resulting in more than three thousand deaths.

Understanding crowds and crowd behaviour is essential for ensuring safety and comfort at mass gatherings such as the annual pilgrimage, the Hajj. In addition, building upon this understanding of the nature of a crowd can assist in the implementation of certain crowd management and crowd control strategies. According to Berlonghi (1995), the ability to understand and predict crowd behaviour allows for an effective and competent management of a precise activity. However, an absence of understanding and ability to foresee a crowd’s behaviour leads to mere random attempts to manage and control the crowd. In fact, such unplanned attempts might result in a serious loss of life, property and money, and a decline in health (Berlonghi, 1995). Moreover, foreseeing and understanding the behaviour of a crowd is not limited to event preparation. It is a continuing process that includes observing crowd behaviour during the event itself (Shuib et al., 2013).

The individual perception of crowding offers an opportunity to understand and predict the effects of a crowded situation at mass gatherings. In addition, understanding the behaviour of individuals will minimise the effects of the problems caused by the negative perception of crowding. According to Zeitz, et al. (2009), at mass gatherings, the changes in crowd behaviour are subject to two important
elements. The first one is called the seed, which describes the process of deviation from what might be classified as ‘normal’ individual behaviour. This shift in individual behaviour might be caused by the effect of the crowding levels and possibly an individual's perception of crowd control. The second element is the adaptation of unpleasant behaviour. Zeitz, *et al.* (2009) claimed that these elements offer new research opportunities to manage crowds, such as by assessing and monitoring crowd behaviours in the pre-event and during the event.

The Hajj is considered to be one of the largest annual, human mass gatherings in the world (Alnabulsi and Drury, 2014). It takes place in the holy place of Makkah (also known as Mecca), Saudi Arabia. The Holy sites are Mina, Arafat, Muzdalifa and Makkah. Since 2000, over two million Muslims, from all over the world, visit these holy places to perform the Hajj. Muslims from different countries, races, cultures, genders and ages come together at these holy locations to perform their Hajj obligations. They form one of the largest multicultural mass gatherings. However, with the development of transportation, the number of pilgrims is increasing. For example, in 2000, the recorded number of pilgrims performing the Hajj was 1.9 million. By contrast, the number of pilgrims in 2010 was 2.8 million (Siddiqui and Gwynne, 2012). This represents a 30% increase in the total number of pilgrims since 2000. In addition, it is forecasted that this figure will reach more than four million by 2040 (Siddiqui and Gwynne, 2012).

1.2 Problem Statement

Consequently, this increasing number of pilgrims creates a movement problem at the holy locations, especially at the holy site of Mina because of its spatial constraints. Mina is described as a valley with a total area of 7.67 km2. This valley consists of a 53% flat area, with a total area of 4.07 km2. It has a 47% mountainous topography, with a total area of 3.60 km2. According to the Ministry of Municipal and Rural Affairs (MoMRA, 1985), approximately 68% of Mina's plane surface is used to accommodate the pilgrims whereas the rest is used for public buildings (7%) and road networks (25%). This means that there is almost 1 km2 of
available area that is dedicated to the movement of more than two million pilgrims. This is less than half a square metre for each pilgrim, or rather it equates to 3 to 4 persons per square metre. Consequently, Mina has become a very dense location. In certain situations, the density at Mina reaches up to 6 persons per m2. Thus, Mina is considered to be a crowded location during the Hajj such that safety has to be a high priority for the Hajj organisers. According to Johansson, et al. (2008), in large crowds, densities higher than 3 to 4 persons per m2 is an indicator of a threat to crowd safety. From this discussion, therefore, it is evident that density has to be a priority. However, density, for Stokols (1972b), is limited to the physical state of crowding experienced by the pilgrims, and does not reflect the psychological state, which seems to be an essential part of their experiences.

With such spatial or physical constraints as a result of the density, the increasing size of the crowds could lead to a disaster at the holy places for the Hajj, such as at Mina. In fact, historical records of Mina contain a number of crushing accidents. Since 1987, there have been more than nine major stampeding incidents that claimed the lives of more than three thousand pilgrims. There are several researchers who claim that these incidents have been caused by a high density flow of pilgrims (Moussaïd et al., 2011; Johansson et al., 2008; Helbing et al., 2007).

According to Edrees (2006), the crowding incidents at Mina happened at the Jamarat area. The Jamarat area includes three pillars, which are viewed as the main destination for pilgrims in Mina. Pilgrims have to move from their tents and walk towards the Jamarat to perform the Stoning of the Devil as one of the Hajj rituals during their stay. However, after an accident that occurred in 2006, the Saudi Arabian government revealed a new development project to increase the old Jamarat Bridge capacity from a single tier to five-storeys, thus allowing a total of 4.5 million pilgrims. This new project significantly enhanced the pilgrims safety at this particular location (Alnabulsi and Drury, 2014). Edrees (2006) had discovered that the Jamarat was not the only crowded place in Mina. This crowding extended into the roads and pathways\(^1\) between the tents blocks, especially the eleven roads and

\[^1\] Roads are designed for cars and used for pedestrian movements during the Hajj, and cars are not allowed to use these roads during the Hajj. Whereas, pathways are originally designed for pedestrian movements.
pathways approaching the Jamarat Bridge (see Figure 1.1). The density of pilgrims in these roads and pathways increases as they get closer to the Jamarat Bridge.

Figure 1.1: Eleven roads and pathways leading to the Jamarat Bridge become crowded during the Hajj, especially when they approach the Jamarat area.

After opening the new Jamarat Bridge, the pressure is now on the roads and pathways leading to the Jamarat. However, there has been no improvement in the capacity of these roads and pathways. This might create a potentially overcrowded area, especially with the current width and maximum flow of these routes (Table 1.1). Considering the narrowness of these routes, there is a high possibility of creating overcrowding conditions at these locations. This might influence the pilgrims’ behaviour and affect them negatively, particularly as the roads and pathways arrive at the Jamarat. Moreover, such crowding conditions could have a detrimental effect on the peaceful atmosphere of the Hajj. Pilgrims need to concentrate on their religious duties without any disturbances caused by possible overcrowding. Hence, the problem of crowding and its effects on the pilgrims’
behaviour is considered a critical issue during the Hajj with respect to the pilgrims and the authorities.

Table 1.1: Names, widths and flows of roads and pathways at Mina

<table>
<thead>
<tr>
<th>Route</th>
<th>Width (m)</th>
<th>Max Flow (ppl/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Majjar Alkabsh</td>
<td>16.15</td>
<td>72675</td>
</tr>
<tr>
<td>2 King Fahad Road</td>
<td>30.00</td>
<td>135000</td>
</tr>
<tr>
<td>3 Al Moaisim Tunnel</td>
<td>25.00</td>
<td>50850</td>
</tr>
<tr>
<td>4 The New Street</td>
<td>13.29</td>
<td>59805</td>
</tr>
<tr>
<td>5 Al Jawhara Road</td>
<td>13.00</td>
<td>58500</td>
</tr>
<tr>
<td>6 Souk Al Arab</td>
<td>11.20</td>
<td>50400</td>
</tr>
<tr>
<td>7 Covered Pedestrian Walk Way</td>
<td>28.60</td>
<td>128700</td>
</tr>
<tr>
<td>8 King Fisal Road</td>
<td>11.65</td>
<td>52425</td>
</tr>
<tr>
<td>9 Parallel Road to 6</td>
<td>13.80</td>
<td>62100</td>
</tr>
<tr>
<td>10 Rabwat Al Hadharem</td>
<td>18.00</td>
<td>81000</td>
</tr>
<tr>
<td>11 King Abdul Aziz Road</td>
<td>30.50</td>
<td>137250</td>
</tr>
<tr>
<td>Total</td>
<td>211.19</td>
<td>888705</td>
</tr>
</tbody>
</table>

1.3 Research Gap

There has been little discussion on the crowding aspect of the Hajj even though enhancing crowd safety is a major concern for the Hajj authorities and researchers. Many studies have been previously implemented with the aim of optimising the safety levels of the Hajj and provide better crowd management. They include mathematical and virtual simulations (Mulyana and Gunawan, 2010; Abdelghany et al., 2012; Curtis et al., 2013; Shuaib et al., 2013), engineering and architectural studies (Siddiqui and Gwynne, 2012; Gad-el-Hak, 2011) and the advance technological implementation of tracking and positioning systems (Muaremi et al., 2014; Wirz et al., 2013; Amer, 2011). These studies principally looked at the issue of crowding and its effects from a technological perspective. According to Alnabulsi and Drury (2014), the current body of the Hajj safety literature has overlooked the psychological aspect of the crowd. For example, simulations, as adopted by previous studies, deal with the human as a subject or as an element in space without considering their psychological state. They only offer behavioural
predictions of what might happen during a crowded event from a physical perspective.

The importance of the psychological aspect of mass gatherings has been highlighted by a recent review. Zeitz, et al. (2009) conclude that there is a limitation to crowd psychology research at mass gatherings in terms of their theoretical and practical bases. Shuib, et al. (2013) point out the need to study the psychological aspect of the crowd in order to make a significant contribution to the Hajj management. He further argues that while there are several studies examining the psychological aspect of crowds in different settings, such as musical festivals and rail settings, this is still missing in studies about the religious contexts such as the Hajj.

However, there are existing studies relating to psychology at the Hajj. These include Ghani, et al. (2014), who measured Malaysian pilgrims for: observable crowd, emotional and cognitive behaviours, as psychological components of crowding during the Hajj. In addition, Alnabulsi and Drury (2014) focused on crowd density and safety, using social identity theory, to claim that crowding has a positive impact on pilgrims when they are in a group that shares the same social identity. Halabi (2006) considered worshippers' behaviour from the social perspective at the Grand Mosque in Makkah, inside and outside the building. Nevertheless, these studies do not address the issue of how crowding can affect the pilgrims’ behaviour, and what factors control their perception of crowding.

Hence, there is a need to study the psychological aspect of the crowd during the Hajj by focusing on the individual. In particular, this study concentrates on the effect of the pilgrims’ perception of crowding whilst performing the Hajj. The setting of this event provides an opportunity to study the varied levels of the perception of crowding, and how it relates to the different factors associated with it.
1.4 Research Aim

The aim of this research is to establish the parameters that affect the perception of crowding to enhance the pilgrims' perception of safety and comfort in Mina during the Hajj.

1.5 Research Objectives

In order to achieve the research aim, the following research objectives have been formulated:

i. To identify possible influential factors that might affect the pilgrims’ perception of crowding in Mina.

ii. To evaluate the impact of the identified influential factors in the way that they affect the pilgrims’ perceived notion of crowding in Mina during the Hajj.

iii. To assess the effect of this perceived crowding on the pilgrims’ safety and comfort at Mina.

iv. To recommend parameters that affect the crowding perception in the Hajj so that they can become amenable to control by the Hajj authorities.

1.6 Research Questions

The research questions for this study are:

i. What are the factors that might influence the pilgrims’ crowding perception in Mina?

ii. To what extent do the identified influential factors affect the pilgrims’ perception of crowding in the context of Mina during the Hajj?
iii. What is the relationship between the perceived crowding and the pilgrims’ experience of safety and comfort?

iv. What are the attributes related to the pilgrims’ perception of crowding that will enhance safety and comfort at Mina during the Hajj?

1.7 Research Methodology

This research starts with an extensive systematic literature review (SLR) to develop a conceptual framework of potential socio-demographic, personal, social and physical factors that can influence the pilgrims’ crowding perception, and hence influence their perception of safety and comfort in Mina. The research employs quantitative methods to identify factors influencing the pilgrims’ crowding perception and their perceived safety and comfort (Creswell and Creswell, 2017). The chosen research design in the present study is a combination of a descriptive and a correlation research design (Dimitrov, 2008). This study adopts a quantitative approach because it offers a non-experimental method in which to collect the data from the pilgrims, and it allows this study to explore the relationship between the variables (Meadows, 2003). In this research, the research process includes: instrument development, a sampling process and data collection (Bhattacherjee, 2012). The questionnaire was selected as an instrument to obtain responses from the pilgrims; it also offers a higher chance of receiving an authentic reply from the respondents as it ensures their anonymity (Nicholas, 2010).

At the end of the field survey in Mina during the Hajj, a total of 1,432 questionnaires were collected from the pilgrims in Mina. The data was screened through case screening and variable screening (Gaskin, 2016). After screening, a total of 1,243 usable responses were analysed by using the Statistical Package for Social Science (SPSS) for descriptive findings. After that, the data was analysed using the Analysis of Moment of Structure (AMOS) for Structural Equation Modeling (SEM).
1.8 Scope of the Study

This study focuses on the holy location of Mina. The main reason for selecting Mina is linked to the duration of the pilgrims stay since they stay for a minimum of three days, as part of the Hajj rituals (Al-Kodmany, 2013). In addition, this study only investigates the pilgrims’ perceived crowding at the routes between the tent blocks in Mina, especially the routes leading to the Jamarat Bridge where most of the overcrowding could occur.

This study employs the official Hajj authority classification of a pilgrim for this study. During the Hajj, it is difficult to classify pilgrims based on their nationalities. Pilgrims come from more than 183 countries (Siddiqui and Gwynne, 2012). In addition, adopting Hajj authority classification enables this research to have different responses from different cultural groups, and so enabling a better understanding of the pilgrims’ perception of crowding and their perceived safety and comfort levels. Moreover, pilgrims move around the area known as the Jamarat, which creates different perceptions of crowding. According to Ministry of Haj and Umra (2016), the pilgrims at the Hajj are classified into seven groups. Six out of these seven groups are organised by six establishments, which are:

i. The Southeast Asian (such as Indonesian, Malaysian and Singaporean) pilgrims.
ii. The (non-Arab) African pilgrims.
iii. The Arab Pilgrims.
iv. The Turkish and Muslim pilgrims from Europe and America.
v. The South Asian (including Indian, Pakistani and Bangladeshi) pilgrims.
vi. The Iranian pilgrims.
vii. The Interior pilgrims

The Interior pilgrim group involves residents of Saudi Arabia. It is not only limited to Saudi Arabian citizens, but it also includes pilgrims from other nationalities who are living in Saudi Arabia.
1.9 Significance of the Study

The significance of this study is derived from the subjects and their perception of crowding:

i. Understanding what crowding perception is at mass gatherings: there is a significant need for further research into recent crowding contexts such as during the Hajj to fill the theory-practice gap in the setting of mass gatherings (Hutton et al., 2011; Zeitz et al., 2009);

ii. The number of visitors coming to perform the Hajj: this religious event attracts more than two million visitors every year from all over the world. Few studies have investigated the pilgrims’ crowding perception (Alnabulsi and Drury, 2014; Shuib et al., 2013);

With this notion of subjects in mind, this study assists in refining and establishing a conceptual framework of perceived crowding at mass gatherings, as part of a theoretical contribution to the field. It identifies the combined influence of personal, social and physical factors on the perception of crowding.

In addition, the results from this study can offer a better understanding of the influential factors affecting the pilgrims’ perceived crowding. From a practical perspective, it contributes to defining the pilgrims’ crowding perception, and thus supports the development of an effective and competent management of the Hajj crowds. This will, in turn, enhance the safety and comfort levels of the pilgrims.

Moreover, for Muslims, the importance of this research is increased as it focuses on the performance of the fifth pillar of Islam, the Hajj. The Hajj is important for every Muslim in the world. The provision of safety and comfort in the Hajj is a major concern for more than 1.2 billion Muslims over the world. This study plays a major role in enhancing the levels of safety and comfort at the Mina by providing certain parameters that affect the crowding perception during the Hajj so that they can become amenable to control by the Hajj authorities.
1.10 Structure of the Thesis

Figure 1.2 presents the main contents of the six chapters in this thesis. The first chapter contained an introduction of this study that covered the research background, problem statement and the research gap. The research aim, objectives and research questions are determined in this chapter. A brief description of the employed methodology, scope and significant of this study were also provided in this chapter.

Chapter Two reviews the related literature of the Hajj. It provides an overview of the Hajj, describing Mina and its crowding conditions as a study site for this research. Further to this, Chapter Three provides a systematic literature review (SLR) on the notion of crowding perception. It covers the related concepts, dimensions and measurements. This chapter also reviews and discusses influential (socio-demographic, personal, social and physical) factors on the perception of crowding, and the impact of this on the perceived safety and comfort levels of the pilgrims. This chapter also proposes a conceptual framework for this research.

Chapter Four explains the research methodology used to address the research questions. It also includes the instruments, sampling techniques, data collection, data screening, data validity and preparation for analysis. Chapter Five provides a detailed account of the data analysis, findings and discussions. It illustrates the descriptive and the multivariate analysis employed in the analysis. This chapter presents an examination and discussion of several structural models related to all pilgrims and the different pilgrim groups. Chapter Six summarises the previous chapters and the main findings. It also presents the research contribution, limitations of this research and directions for future research.
Figure 1.2: Thesis chapters and the flow of research.
REFERENCES

Avila-Foucat, V.S., Sánchez Vargas, A., Frisch Jordan, A. and Ramírez Flores,

Muaremi, A. et al. (2014). Understanding Aspects of Pilgrimage Using Social

Robin, J. et al. (2017). Selective Scene Perception Deficits in a case of

Six, B., Martin, P. and Pecher, M. (1983). A Cultural Comparison of Perceived...

