THE OPTIMAL COASTAL RETRACKED SEA LEVELS FROM SARAL/ALTIIKA SATELLITE ALTIMETRY OVER THE SOUTHEAST ASIA

NOOR NABILAH BINTI ABDULLAH

UNIVERSITI TEKNOLOGI MALAYSIA
THE OPTIMAL COASTAL RETRACKED SEA LEVELS FROM SARAL/ALTICA SATELLITE ALTIMETRY OVER THE SOUTHEAST ASIA

NOOR NABILAH BINTI ABDULLAH

A report submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

APRIL 2018
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Dr. Nurul Hazrina Idris and my co-supervisor Dr. Nurul Hawani Idris for the continues support of my Master study and related research, for their enormous guidance, patient, motivation and knowledge. Their doors were always open whenever I ran into a trouble spot or had questions about my research or writing. They always steered me in the right direction whenever they thought I needed it.

I would also like to thank Dr. Dudy Wijaya from Institute Teknologi Bandung, Indonesia and Dr. Angela Maharaj from the University of New South Wales, Australia for their insightful suggestions, invaluable guidance and encouragement during much of this research and for providing some references and useful discussion, which incited me to widen my research from various perspectives.

Special acknowledgment to my seniors, my colleagues and my best friends for their helping hand in cordial supports, valuable information and guidance, which help me in completing the task through various stages. Thank you for providing me assistance at various occasions without which this study would not be possible.

At this juncture, I feel deeply honoured in expressing my profound gratitude and deepest regards to my mum and dad for their loves, bless and constant support from time to time. This support shall carry me a long way in the journey of life on which I am about to embark upon. Thank you for being a constant source of inspiration during the preparation of this study. And to them, I dedicated this work.
ABSTRACT

The current demand for accurate coastal altimetry data, particularly for the sea level has increased since human activities have become increasingly concentrated along coastal areas. Over coastal region, particularly within 10 km from the coastline, the altimeter footprint is severely contaminated by land and rough coastal sea states. The contamination leads to the low quality observations, thus creating a significant gap in data availability over the coast. The aim of this study is to evaluate the quality of coastal retracked sea level data from AltiKa satellite altimetry over the Southeast Asia region. In this study, high resolution (40 Hz) sea levels derived from the advanced AltiKa satellite altimetry are validated over the Southeast Asia coastal regions. The parameter of sea level is derived based on three standard retracking algorithms which are MLE-4, Ice-1 and Ice-2. The assessments of quantity and quality of the retracked sea levels data are conducted to identify the optimum retracker over the study regions, which are Andaman Sea, Strait of Malacca, South China Sea, Gulf of Thailand and Sulu Sea. The quantitative analysis involves the comparison between AltiKa and Jason-2 waveforms, the computation of percentage of data availability, and the minimum distance of Sea Level Anomaly (SLA) to the coastline. The qualitative analysis involves the relative validation with geoid height and absolute validation with tide gauge. In general, AltiKa measurement can obtain as close as 1 km to the coastline with ≥85% data availability. The Ice-1 retracker has shown an excellent performance with percentage of data availability at ≥90% and minimum distance as close as 0.9 km to the coastline. In term of quality, Ice-1 retracker shows the highest improvement of percentage (IMP) values over Andaman Sea, Sulu Sea and Strait of Malacca with IMPs of 19%, 16% and 43%, respectively. The Ice-1 retracker also shows the highest temporal correlation (up to 0.95) and the lowest root mean square (RMS) error up to 8 cm over distance less than 10 km for those three regions. Contrary, over the South China Sea, Ice-2 retracker has better performance when compared to other retrackers with IMP values of 43%. Over distance less than 10 km to the shore, the temporal correlation and RMS error reach up to 0.88 and 7 cm respectively. Over the Gulf of Thailand, the optimum retracker cannot be concluded due to unavailable tide gauge data. The Ice-1 is the optimum retracker over three out of four regions. Therefore, it is used to study the seasonal variability of sea levels over the Southeast Asia. The seasonal variability shows that the mean amplitude is up to 25 cm during the Northeast Monsoon and decreased by 9 cm during the Southwest Monsoon and between 2 to 9 cm during inter-monsoon seasons. In conclusion, the research has significantly contributed in defining the quantity and quality of the AltiKa SLAs in the coastal region of Southeast Asia. The results from comprehensive validation obtained in this research present a significant improvement in identifying the reliability and applicability of the AltiKa datasets and retracking algorithms over the coastal area of the study region.
ABSTRAK

Permintaan semasa untuk data altimetri pesisir yang tepat, terutamanya untuk paras laut telah meningkat sejak aktiviti manusia menjadi semakin tertumpu di sepanjang kawasan pantai. Di kawasan pesisir, terutamanya dalam lingkungan 10 km dari garis pantai, jejak altimeter dicemari dengan teruk oleh tanah dan keadaan laut yang bergelora. Pencemaran membawa kepada cerapan yang berkualiti rendah, sekali gus mewujudkan jurang yang ketara dalam ketersediaan data di pantai. Tujuan kajian ini adalah untuk menilai kualiti data paras laut pesisir dari satelit AltiKa di rantau Asia Tenggara. Dalam kajian ini, aras laut beresolusi tinggi (40 Hz) yang diterbitkan dari satelit altimetri termaju AltiKa disahkan di kawasan pantai Asia Tenggara. Parameter aras laut diterbitkan berdasarkan kepada tiga algoritma penjejak piawai iaitu MLE-4, Ice-1 dan Ice-2. Penilaian kuantiti dan kualiti data aras laut yang telah menjalani pembetulan dijalankan untuk mengenal pasti penjejak yang optimum di kawasan kajian iaitu Laut Andaman, Selat Melaka, Laut China Selatan, Teluk Thailand dan Laut Sulu. Analisis kuantitatif melibatkan perbandingan antara bentuk gelombang AltiKa dan Jason-2, pengiraan peratusan ketersediaan data, dan jarak minimum aras anomali laut (SLA) ke garis pantai. Analisa kualitatif melibatkan pengesahan relatif dengan ketinggian geoid dan pengesahan mutlak dengan pengukur tolok pasang surut. Secara umumnya, pengukuran AltiKa dapat mencapai sehingga 1 km ke garis pantai dengan ketersediaan data ≥85%. Penjejak Ice-1 telah menunjukkan prestasi cemerlang dengan peratusan ketersediaan data pada ≥90% dan jarak minimum sehingga 0.9 km ke garis pantai. Dari segi kualiti data, penjejak Ice-1 menunjukkan nilai-nilai peratusan peningkatan (IMP) tertinggi di Laut Andaman, Laut Sulu dan Selat Melaka dengan IMP masing-masing sebanyak 19%, 16% dan 43%. Penjejak Ice-1 juga menunjukkan korelasi temporal tertinggi (sehingga 0.95) dan ralat punca kuasa min (RMS) yang terendah sehingga 8 cm pada jarak kurang daripada 10 km untuk ketiga-tiga kawasan tersebut. Sebaliknya, di Laut China Selatan, penjejak Ice-2 mempunyai prestasi yang lebih baik berbanding penjejak yang lain dengan nilai IMP 43%. Bagi jarak kurang daripada 10 km ke garis pantai, korelasi temporal dan ralat RMS masing-masing mencapai sehingga 0.88 dan 7 cm. Di Teluk Thailand, penjejak yang optimum tidak dapat disimpulkan disebabkan oleh ketiadaan data tolok pasang surut. Ice-1 adalah penjejak yang optimum di tiga daripada empat kawasan. Oleh itu, ianya digunakan untuk kajian variasi bermusim bagi aras laut di rantau Asia Tenggara. Variasi bermusim menunjukkan min amplitud adalah sehingga 25 cm semasa musim Monsun Timur Laut dan menunur sebanyak 9 cm semasa musim Monsun Barat Daya dan diantara 2 hingga 9 cm semasa musim peralihan monsoon. Kesimpulannya, penyelidikan ini telah menyumbang secara ketara dalam menentukan kuantiti dan kualiti data SLA AltiKa di rantau pantai Asia Tenggara. Hasil daripada pengesahan komprehensif yang diperolehi dalam kajian ini menunjukkan peningkatan yang ketara dalam mengenal pasti kebolehpercayaan dan kebolehgunaan data AltiKa dan algoritma penjejak di pesisir pantai dalam kawasan kajian.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of the Study | 1 |
1.2 Issues with Coastal Altimetry Data for Mapping Sea Level | 6 |
1.3 Research Questions | 11 |
1.4 Aim and Objectives of the Study | 12 |
1.5 Research Scope | 12 |
1.6 Significance of the Study | 14 |
1.7 Thesis Outline | 15 |

2 SATELLITE ALTIMETER FOR OCEAN GEOPHYSICAL STUDIES

2.1 Introduction | 17 |
2.2 Derivation of Sea Level from Satellite Altimetry | 17 |
<table>
<thead>
<tr>
<th>2.3 Waveform Retracking Algorithms</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 The Brown Model</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2 Maximum Likelihood Estimation-4 Retracking Method</td>
<td>26</td>
</tr>
<tr>
<td>2.3.3 Ice-1 Retracking Method</td>
<td>29</td>
</tr>
<tr>
<td>2.3.4 Ice-2 Retracking Method</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Effort in Bringing Altimeter Data Closer to the Coast</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Information about SARAL/AltiKa Satellite Altimetry Mission</td>
<td>42</td>
</tr>
<tr>
<td>2.5.1 Issue with Clouds and Precipitation Effect on SARAL/AltiKa Ka-band</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Relative and Absolute Validation of Satellite Altimetry</td>
<td>46</td>
</tr>
<tr>
<td>2.7 Prior Study on Sea Level over Southeast Asia Region</td>
<td>48</td>
</tr>
<tr>
<td>2.8 Summary</td>
<td>51</td>
</tr>
</tbody>
</table>

3 STUDY AREA AND RESEARCH METHODOLOGY 53

3.1 Description of Study Area	53
3.2 Research Methodology	54
3.3 Phase I: Data Acquisition	57
3.4 Phase II: Data Pre-processing	58
3.5 Phase III: Data Processing	61
3.5.1 Altimeter Data Processing	62
3.5.2 Tide Gauge Data Processing	65
3.5.3 Wind and Sea Surface Current Data Processing	66
3.6 Phase IV: Data Analysis	67
3.5.1 Comparison between AltiKa and Jason-2 Waveforms	67
3.5.2 Percentage of Data Availability and Minimum Distance from Coastline	68
3.5.3 Relative Comparison of AltiKa SSHs with Geoid Height	68
3.5.4 Absolute Validation of AltiKa SLAs with In-situ Tide Gauge	69
3.5.5 Analysis of the Optimum Retracker 71
3.7 Phase V: Mapping Seasonal Sea Level Variability 72
3.8 Summary 72

4 QUANTITATIVE ANALYSIS OF SEA LEVEL DATA AVAILABILITY OVER THE COASTAL REGIONS 73
4.1 Introduction 73
4.2 The Comparison between AltiKa and Jason-2 Waveforms 74
4.3 Data Availability of SARAL/AltiKa retracked SLA over the Coastal Region 81
4.4 The Minimum Distance of the SARAL/AltiKa retracked SLAs to the Coastline 88
4.5 Summary 90

5 QUALITATIVE ANALYSIS OF RETRACKED SEA LEVEL OVER COASTAL REGIONS 92
5.1 Introduction 92
5.2 Relative Comparison of Retracked SSHs with Geoid Height 93
5.3 Absolute Validation of Retracked SLAs with Tide Gauge 97
5.3.1 Validation near the Bintulu Tide Gauge 98
5.3.2 Validation near the Geting Tide Gauge 102
5.3.3 Validation near the Vung Tau Tide Gauge 106
5.3.4 Validation near the Langkawi Tide Gauge 110
5.3.5 Validation near the Ko Taphao Noi Tide Gauge 114
5.3.6 Validation near the Lubang Tide Gauge 118
5.3.7 Factor that Influence the Precission and Accuracy of SARAL/AltiKa Sea Level 123
5.4 Summary 124
6 SEASONAL PATTERN OF SEA LEVEL OVER THE SOUTHEAST ASIA AND THE INFLUENCE OF UPWELLING FEATURE IN COASTAL AREA 126

6.1 Introduction 126

6.2 Seasonal Variability of SLA and their Relationship with Sea surface current and Wind Speed over Southeast Asia 128

6.2.1 Physical Characteristics of Wind, Sea Surface Current, and SLA, and their Connections during the Northeast Monsoon 131

6.2.2 Physical Characteristics of Wind, Sea Surface Current, and SLA, and their Connection during the Southwest Monsoon Season 134

6.2.3 Physical Characteristics of Wind, Sea Surface Current, and SLA, and their Connection during the Inter-monsoon Season 137

6.3 The Influence of Upwelling Feature to the Sea Level Variability over South China Sea 141

6.4 Summary 145

7 CONCLUSIONS AND RECOMMENDATIONS 147

7.1 Summary of the Research 147

7.2 Summary of Findings 148

7.2.1 The Quantitative and Qualitative Analysis of the AltiKa Retracked Sea Level 149

7.2.2 Spatial and Temporal Seasonal Variability of Sea Level 150

7.3 Recommendations for Future Work 152

REFERENCES 154
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of retracking method utilised in the study.</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>The summary of previous study in improving the accuracy of altimetry measurement over the coastal area.</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>List of tide gauge stations utilised in this study.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Defined threshold for editing AltiKa Ka-band data.</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of adopted models for deriving geophysical corrections in the AltiKa SGDR product (AVISO 2013).</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean of signal-to-noise ratio of AltiKa and Jason-2 at cross-over points.</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Example of STDs and IMPs of retrackers calculated from 19 cycles for several passes of SARAL/AltiKa</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Information of tide gauge stations and the corresponding passes.</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>The mean temporal correlation and RMS error of MLE-4, Ice-1, and Ice-2 retracked SLAs along pass 808 with respect to the Bintulu tide gauge.</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>The mean temporal correlation and RMS error of the MLE-4, Ice-1, and Ice-2 retracked SLAs along pass 494 with respect to the Geting tide gauge</td>
<td>106</td>
</tr>
</tbody>
</table>
5.5 The mean temporal correlation and RMS error of the MLE-4, Ice-1, and Ice-2 retracked SLAs along pass 479 with respect to the Vung Tau tide gauge.

5.6 The mean temporal correlation and RMS error of the MLE-4, Ice-1, and Ice-2 retracked SLAs along pass 122 with respect to the Langkawi tide gauge.

5.7 The mean temporal correlation and RMS error of the MLE-4, Ice-1, and Ice-2 retracked SLAs along pass 479 with respect to the Ko Taphao Noi tide gauge.

5.8 The mean of temporal correlation and RMS error of the MLE-4, Ice-1 and Ice-2 retracked SLAs along pass 006, with respect to the Lubang tide gauge.

6.1 SLA variability showing the values of minimum, maximum and average (in unit cm) over the monsoon seasons.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic altimeter waveform with the geophysical parameters that correspond to different parts of the waveform over homogenous ocean surface (adapted from Idris, 2014).</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>(Top panel) Schematic representation of pulse-limited altimeter short pulse propagation from the altimeter to the sea surface in the case of an ocean-to-land transition. B is the bandwidth of the altimeter in unit of Hertz; c is the speed of light; c/(2B) is the altimeter sampling rate; H is the altimeter height; t₁ and t₂ are the epoch of the first and last measurement; and τ₀ is the epoch with respect to the nominal tracking position. (Lower panel) Top-down view of the pulse limited footprint corresponding to each waveform gate (adapted from Gommenginger et al., 2011).</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Shape of waveform when approaching the coastline. The waveform (in red) does not conform to the Brown model when it gets close to the coast due to land contamination (http://www.coastalt.eu/coastalt-short-web-summary, access on 10 March 2015).</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>The principle of radar altimetry for retrieving sea level parameter.</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of the OCOG method (adapted from Gommenginger, et al., 2011).</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic diagram of the Ice-2 retracking method. The blue line represents the altimetric waveform and the yellow line represents the fitting function from Ice-2 retracking (adapted from Legsry, et al., 2005).</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic design of Ice-2 retracking method. The altimeter waveform is divided into four estimation windows, which are thermal noise, leading edge, trailing edge-1, and trailing edge-2.</td>
<td>32</td>
</tr>
</tbody>
</table>
2.5 (a) AltiKa waveforms over Pass 121 Cycle 5 during rain events, (b) collocated rain rate, (c) mean normalized waveforms in nominal conditions (black line) and during rain events delineated by the red dotted rectangles in (a) (red line, adapted from Tournadre, et al., 2015).

3.1 The region of study area. Red marks indicate the tide gauge stations and green lines indicate the AltiKa ground passes. The blue lines are the AltiKa ground passes used for validation purposes.

3.2 Flowchart of research methodology.

3.3 (a) Tide data condition with spikes (red box), data gap (green box), and reference change (black box). (b) Tide data after data pre-processing.

3.4 Examples of tide gauge original time series (blue), the tidal anomaly computed from harmonic analysis (green) and the de-tided sea level (red) will be used for comparison with the altimeter at (a) Langkawi and (b) Geting tide gauge stations.

3.5 Time series of tide gauges and AltiKa SLAs after removing the mean difference between both datasets. The time series is plotted based on the nearest AltiKa point of respective passes with the respective tide gauges.

4.1 (a) AltiKa and Jason-2 ground passes 006 cycle 2 (in red) and 203 cycle 176 (in blue), respectively, near North Kalimantan. (b) and (c) Waveforms spectra corresponding to (a), for AltiKa and Jason-2, respectively. Green, black and purple lines represent the distance of 2 km, 4 km and 6 km to the coastline, respectively. (d) and (e) Waveform shapes related to locations and colours in (a), for AltiKa and Jason-2, respectively

4.2 AltiKa and Jason-2 waveforms pattern at cross-over point. (a) The location of cross-over point between AltiKa pass 836 and Jason-2 pass 12 near Basilan, Philippines. (b-g) Waveform patterns of both satellites from different cycles.

4.3 AltiKa and Jason-2 waveforms pattern at cross-over point. (a) The location of cross-over point between AltiKa pass 322 and Jason-2 pass 242 near Batam, Singapore. (b-g) Waveform patterns of both satellites from different cycles.
AltiKa and Jason-2 waveforms pattern at cross-over point. (a) The location of cross-over point between AltiKa pass 264 and Jason-2 pass 38 near Miri, Malaysia. (b-g) Waveform patterns of both satellites from different cycles.

AltiKa and Jason-2 waveforms pattern at cross-over point. (a) The location of cross-over point between AltiKa pass 249 and Jason-2 pass 103 near Lord Loughborough Island, Myanmar. (b-g) Waveform patterns of both satellites from different cycles.

AltiKa and Jason-2 waveforms pattern at cross-over point. (a) The location of cross-over point between AltiKa pass 494 and Jason-2 pass 64 near Koh Rong Island, Cambodia. (b-g) Waveform patterns of both satellites from different cycles.

(a) The data availability (in unit %) for MLE-4 retracked SLAs over the Southeast Asia. Close up for (b) Andaman Sea, (c) Gulf of Thailand, (d) Strait of Malacca, (e) South China Sea, and (f) Sulu Sea. Figure b-f are plotted in a different scale.

(a) The data availability (in unit %) for Ice-1 retracked SLAs over the Southeast Asia. Close up for (b) Andaman Sea, (c) Gulf of Thailand, (d) Strait of Malacca, (e) South China Sea, and (f) Sulu Sea. Figure b-f are plotted in a different scale.

(a) The data availability (in unit %) for Ice-2 retracked SLAs over the Southeast Asia. Close up for (b) Andaman Sea, (c) Gulf of Thailand, (d) Strait of Malacca, (e) South China Sea, and (f) Sulu Sea. Figure b-f are plotted in a different scale.

The data availability (in unit %) for MLE-4 retracked SLAs. Close up for (a) near Riau archipelago and (b) over Philippines coastal water.

The data availability (in unit %) for Ice-1 retracked SLAs. Close up for (a) near Riau archipelago and (b) over Philippines coastal water.

The data availability (in unit %) for Ice-2 retracked SLAs. Close up for (a) near Riau archipelago and (b) over Philippines coastal water.

Mean percentage of AltiKa data availability over five experimental regions computed within 30 km of the coastline. It is computed from 18 passes for the Andaman
Sea and the Strait of Malacca, 16 passes for the Gulf of Thailand, 30 passes for the South China Sea, and 17 passes for the Sulu Sea.

4.14 Mean of minimum distance of AltiKa MLE-4, Ice-1, and Ice-2 retracked SLAs to the coastline for several passes over the South-East Asia coastal regions, computed from 19 cycles.

4.15 Mean of minimum distance of AltiKa for MLE-4, Ice-1 and Ice-2 retracked SLAs to the coastline over five experimental regions, computed from 19 cycles.

5.1 The mean IMP of Ice-1 and Ice-2 retractors that are computed within 30 km from the coastline. It is computed from 18 passes for the Andaman Sea and Strait of Malacca, 16 passes for the Gulf of Thailand, 30 passes for the South China Sea, and 17 passes for the Sulu Sea.

5.2 a) AltiKa satellite pass 808 near Bintulu tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.3 SLA time series along pass 808 near Bintulu tide gauge station at different distances from the coastline. \(r \) represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.4 Spatial plot of the temporal correlation (left) and the RMS error (right) of SLAs from different retracking methods along AltiKa pass 808 with respect to the Bintulu tide gauge. Distance to coastline is shown in black line labelled as 5 km, 10 km, 30 km, and 50 km.

5.5 a) AltiKa satellite pass 494 near Geting tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.6 SLA time series along pass 494 near the Geting tide gauge station at different distances from the coastline. \(r \) represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.7 Spatial plot of the temporal correlation and the RMS error of SLAs from different retracking methods along AltiKa pass 494, with respect to the Geting tide gauge. Distance from the coastline is shown by the black line labelled as 5 km, 10 km, 30 km, and 50 km.
5.8 a) AltiKa satellite pass 479 near the Vung Tau tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.9 SLA time series along pass 479 near the Vung Tau tide gauge station at different distances to the coastline. r represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.10 Spatial plot of the temporal correlation and the RMS error of SLAs from different retracking methods along AltiKa pass 479 with respect to the Vung Tau tide gauge. Distance to coastline is shown in black line labelled as 5 km, 10 km, 30 km, and 50 km.

5.11 a) AltiKa satellite pass 122 near the Langkawi tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.12 SLA time series along pass 122 near the Langkawi tide gauge station at different distances from the coastline. r represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.13 Spatial plot of the temporal correlation and the RMS error of SLAs from different retracking methods along AltiKa pass 122, with respect to the Langkawi tide gauge. Distance to the coastline is shown in black line labelled as 5 km, 10 km, 30 km, and 50 km.

5.14 a) AltiKa satellite pass 537 near the Ko Taphao Noi tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.15 SLA time series along pass 537 near the Ko Taphao Noi tide gauge station at different distances from the coastline. r represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.16 Spatial plot of the temporal correlation and the RMS error of SLAs from different retracking methods along AltiKa pass 537 with respect to the Ko Taphao Noi tide gauge. Distance from the coastline is shown in black line labelled as 5 km, 10 km, 30 km, and 50 km.

5.17 a) AltiKa satellite pass 006 near the Lubang tide gauge station, and b) waveform power spectra along the pass for cycle 2.

5.18 SLA time series along pass 006 near the Lubang tide gauge station at different distances from the coastline. r
represents the temporal correlation of the AltiKa retracted SLA with respect to the tide gauge.

5.19 Spatial plot of the temporal correlation and the RMS error of SLAs from different retracking methods along AltiKa pass 006, with respect to the Lubang tide gauge. Distance to the coastline is shown in black line labelled as 5 km, 10 km, 30 km, and 50 km.

6.1 Map of SLAs (in unit cm) during the Northeast Monsoon overlaid with: a) wind speed (in unit cm/s), and b) sea surface current (in unit cm/s).

6.3 Map of SLAs (in unit cm) during the Southwest Monsoon overlaid with: a) wind speed (in unit cm/s), and b) sea surface current (in unit cm/s).

6.5 Map of SLAs (in unit cm) during the inter-monsoon season (April-May) overlaid with: a) wind speed (in unit cm/s) and b) sea surface current (in unit cm/s).

6.6 Map of SLAs (in unit cm) during the inter-monsoon season (September-October) overlaid with: a) wind speed (in unit cm/s) and b) sea surface current (in unit cm/s).

6.7 Map of SLAs (in unit cm) over east coast of Peninsular Malaysia during a) June, b) July, c) August and d) September with wind speed (in unit cm/s).

6.8 Monthly-mean MODIS SST (in unit °C) of 2002-2012, overlaid with monthly-mean wind (arrow) from the European Center of Medium-Range Weather Forecasts (ECMWF; adapted from Mohd Akhir et al., 2015)

6.9 Map of SLAs (in unit cm) over Vietnamese coast during a) June, b) July, c) August and d) September with wind speed (in unit cm/s).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCP</td>
<td>Acoustic Doppler Current Profiler</td>
</tr>
<tr>
<td>ALTICORE</td>
<td>Altimetry in Coastal Region</td>
</tr>
<tr>
<td>AVISO</td>
<td>Archiving, Validation and Interpretation of Satellite Oceanographic Data</td>
</tr>
<tr>
<td>CIOSS</td>
<td>Cooperative Institute for Oceanographic Satellite Studies</td>
</tr>
<tr>
<td>CLS</td>
<td>Collected Localisation Satellites</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Etudes Spatiales</td>
</tr>
<tr>
<td>COASTALT</td>
<td>Coastal Altimetry Community</td>
</tr>
<tr>
<td>CTOH</td>
<td>Center for Topographic studies of the Ocean and Hydrosphere</td>
</tr>
<tr>
<td>DSMM</td>
<td>Department of Survey and Mapping Malaysia</td>
</tr>
<tr>
<td>DORIS</td>
<td>Doppler Orbitography and Radiopositioning Integrated by Satellite</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Center of Medium-Range Weather Forecasts</td>
</tr>
<tr>
<td>EGM2008</td>
<td>Earth Gravitational Model 2008</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agencies</td>
</tr>
<tr>
<td>FES</td>
<td>Finite Element Solution</td>
</tr>
<tr>
<td>GECKO</td>
<td>Global Surface Current Data Product</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GODAE</td>
<td>Global Ocean Data Assimilation Experiment</td>
</tr>
</tbody>
</table>
GPS - Global Positioning System
GRACE - Gravity Recovery and Climate Experimental
HF - High Frequency
IGOS - Integrated Global Observing Strategy
ILWC - Integrated Liquid Water Content
IMA - Inter-monsoon April And May
IMP - Improvement of Percentage
IMS - Inter-monsoon September and October
ISRO - Indian Space Research Organization
ITCZ - Intertropical Convergence Zone
MLE - Maximum Likelihood Estimator
MODIS - Moderate Resolution Imaging Spectroradiometer
MP - Matching Pursuit
MSSH - Mean Sea Surface Height
NOAA - National Oceanic and Atmospheric Administration
OCOG - Offset Center of Gravity
OSTST - Ocean Surface Topography Science Team
PEACHI - Prototype for Expertise an AltiKa for Coastal, Hydrology and Ice
PISTACH - Coastal and Inland Water Innovative Altimetry Processing Prototype
PTR - Point Target Respond
RMS - Root Mean Square
SGDR - Sensor Geophysical Data Record
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGDR</td>
<td>Sensor Interim Geophysical Data Record</td>
</tr>
<tr>
<td>SLA</td>
<td>Sea Level Anomaly</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SPCZ</td>
<td>South Pacific Convergence Zone</td>
</tr>
<tr>
<td>SSB</td>
<td>Sea State Bias</td>
</tr>
<tr>
<td>SSH</td>
<td>Sea Surface Height</td>
</tr>
<tr>
<td>STD</td>
<td>Standard Deviation of Difference</td>
</tr>
<tr>
<td>SWH</td>
<td>Significant Wave Height</td>
</tr>
<tr>
<td>UHSLC</td>
<td>University of Hawaii Sea Level Centre</td>
</tr>
<tr>
<td>USO</td>
<td>Ultra-stable Oscillator</td>
</tr>
<tr>
<td>ZPD</td>
<td>Zenith Total Delay</td>
</tr>
<tr>
<td>ZWD</td>
<td>Zenith Wet Delay</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>$R_{\text{retracted}}$</td>
<td>Range correction</td>
</tr>
<tr>
<td>R_{dry}</td>
<td>Dry tropospheric correction</td>
</tr>
<tr>
<td>R_{wet}</td>
<td>Wet tropospheric correction</td>
</tr>
<tr>
<td>R_{iono}</td>
<td>Ionospheric correction</td>
</tr>
<tr>
<td>$R_{\text{corrected}}$</td>
<td>Corrected range</td>
</tr>
<tr>
<td>R_{obs}</td>
<td>Observed range</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>c</td>
<td>Speed of radar pulse</td>
</tr>
<tr>
<td>H</td>
<td>Satellite altitude</td>
</tr>
<tr>
<td>h</td>
<td>Height</td>
</tr>
<tr>
<td>h_{geoid}</td>
<td>Geoid height</td>
</tr>
<tr>
<td>h_{tides}</td>
<td>Tides</td>
</tr>
<tr>
<td>h_{atm}</td>
<td>Dynamic atmospheric correction</td>
</tr>
<tr>
<td>h_D</td>
<td>Sea surface height</td>
</tr>
<tr>
<td>h_{MSSH}</td>
<td>Mean sea surface height</td>
</tr>
<tr>
<td>h_{SLA}</td>
<td>Sea level anomaly</td>
</tr>
<tr>
<td>P</td>
<td>Satellite return power</td>
</tr>
<tr>
<td>P_{FS}</td>
<td>Flat surface response</td>
</tr>
</tbody>
</table>
- P_{PT}: Theoretical point target response
- q: Probability density function
- B: Reception bandwidth of the altimeter
- σ_p: Width of the radar point target response function
- r_t: Time resolution
- ξ: Off-nadir pointing angle
- σ_s: Standard deviation of sea surface elevation
- U: Unit step function
- I_0: Bessel function
- A: Amplitude
- G_0: Radar system parameters of gain of the radar antenna
- λ: Radar carrier wavelength
- L_p: Two-way propagation loss
- h_s: Modified satellite altitude
- R_t: Radius of the Earth
- γ: Antenna bandwidth
- P_N: Altimeter’s thermal noise
- σ: Rise time
- T: Units of satellite altimeter gates divided by sampling time
- g_0: Expected tracking gate in unit waveform gates
- N: Number of pulses averaged
- n: Number of bins or gates in each waveforms
\(\hat{u}_i \) - Measured return power

\(u_i \) - Theoretical return power

\(P_r \) - Return power of the surface

\(T_N \) - Denotes thermal noise

\(\theta_j \) - Retrieved parameters

\(V \) - Variance-covariance matrix

\(F \) - Fisher information matrix

\(\delta_{ir} \) - Kronecker delta (function of two variable of positive integers)

\(n_{parameters} \) - Number of parameters

\(W \) - Width of the waveform

\(COG \) - Waveform center of gravity

\(P_i \) - Waveform power

\(N_w \) - Total number of samples in the waveform

\(LEP \) - Leading edge position

\(m \) - Threshold value

\(G_r \) - Retracked range of the leading edge of the waveform

\(G_k \) - Power at the gate

\(k \) - Location of the first gate exceeding

\(S_t \) - Slope of the logarithm of the trailing edge

\(\tau \) - Epoch

\(\sigma_L \) - Width of the leading edge

\(P_t \) - Mean power of the waveform
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_c)</td>
<td>Standard deviation of the ocean wave height</td>
</tr>
<tr>
<td>(A_u)</td>
<td>Amplitude of the waveform</td>
</tr>
<tr>
<td>(V_h)</td>
<td>Wind/current speed</td>
</tr>
<tr>
<td>(u)</td>
<td>Zonal component</td>
</tr>
<tr>
<td>(v)</td>
<td>Meridional component</td>
</tr>
<tr>
<td>(\phi_{VECT})</td>
<td>Wind/current vector azimuth in unit degree</td>
</tr>
<tr>
<td>(IMP)</td>
<td>Improvement of percentage</td>
</tr>
<tr>
<td>(\sigma_{MLE4})</td>
<td>Standard deviation of difference (STD) between MLE-4 retracked SSH and geoid heights</td>
</tr>
<tr>
<td>(\sigma_{retracted})</td>
<td>STD of different between Ice-1 or Ice-2 retracked sea levels and geoid heights</td>
</tr>
<tr>
<td>(r)</td>
<td>Correlation</td>
</tr>
<tr>
<td>(n)</td>
<td>Number of pair data</td>
</tr>
<tr>
<td>(x)</td>
<td>Altimeter data</td>
</tr>
<tr>
<td>(y)</td>
<td>Tide gauge data</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>175</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Satellite altimeter is a nadir pointing microwave instrument that measures the distance between the satellite and the target surface. It is a matured discipline that provides accurate measurements of ocean geophysical information of significant wave heights (SWHs), sea surface height (SSHs), and wind speed over the open ocean (Gommenginger et al., 2011). Satellite altimeter also one of the most important techniques for operational oceanography, particularly in providing a continuity of the data record (Le Traon et al., 2015). Moreover, satellite altimeter can provide high quality data in global scale with a sufficiently dense space and time sampling (Le Traon, 2011; Le Traon et al., 2015).

The concept of altimeter measurements is to measure two-ways travel time of pulse. The satellite altimeter emits pulses and analyses the returned signals reflected by the Earth’s surface. Satellite position is referred to the ellipsoid (e.g., WGS84) and is precisely measured through orbit determination by using Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or Global Positioning System (GPS) receivers, or both (Benveniste, 2011).

Waveform is the altimetry radar-returned signal that represents the time evolution of the reflected power as the pulse hits the surface. Waveforms over the open ocean (without land contamination) can be described by Brown (1977) model (Figure
A Brown-like or ocean-like waveform features a leading edge which has a sharp rise up to a maximum value, followed by a trailing edge, which is a gently sloping plateau. The parameters of the mid-point of the leading edge are associated with altimeter range (referred to as epoch) which can be used to estimate the SSH. The slope of the leading edge is associated with the SWH. The wind speed can be derived from the amplitude of the waveform.

Figure 1.1: Schematic altimeter waveform with the geophysical parameters that correspond to different parts of the waveform over homogenous ocean surface (adapted from Idris, 2014).

Altimeter instruments can only measure returned signals in a narrow range window (typically 60 mm in vertical), called the ‘analysis window’. In order to keep the reflected signals from the surface within the altimeter analysis window, an on-board tracker is used (Gommenginger et al., 2011). Closed-loop regulators are used to measure the time delay between transmitted pulse and return pulse by using an α-β tracker and to keep the reflected signal within the altimeter analysis window (Gommenginger et al., 2011). It holds the waveform’s nominal position at a fixed point and amplitude with the intention of keeping the leading edge of the return pulse in the...
middle position of the sample at a corresponding time interval. The Maximum Likelihood Estimator (MLE) algorithm is applied to waveforms to fit the Brown (1977) model for retrieving ocean parameters (Idris, 2014). This is applied on-board the satellite. In order to gain the maximum accuracy of ocean parameters and to retrieve the final geophysical parameters, waveform retracking is performed on the ground. Waveform retracking is the procedure of post-processing to fit a functional form or model to the measured waveform. In order to improve parameter estimates (i.e., the power amplitude, epoch, and slopes of leading edge and trailing edge) over those estimated by the satellite on-board tracker, the retracking method is applied (Gommenginger et al., 2011).

Over the last 30 years, numerous satellite altimeter missions have been launched such as Topex/Poseidon, ERS-1, ERS-2, Envisat, Jason-1, Jason-2, Jason-3, Cryosat-2, and the SARAL/AltiKa (hereafter referred as AltiKa). The Envisat and Jason-1 altimeter missions were officially retired in April 2012 and June 2013, respectively. In July 2008, Jason-2 was launched and flew on almost identical orbits with Jason-1, ~1 minute apart during the calibration phase (Idris, 2014). Then, in May 2012, the Jason-1 satellite was shifted to a lower orbit to begin its geodetic mission until it was decommissioned in July 2013. The Jason-3 was launched in February 2016 with a mission to extend the time series of ocean surface topography measurements of Topex/Poseidon, Jason-1, and Jason-2. The Cryosat-2 was launched in 2010 and equipped with an advanced microwave delay-Doppler/Synthetic Aperture Radar. It produces a footprint that is beam-limited in the along-track direction, which is in contract with the conventional ocean-viewing radar altimeter (such as Jason-1) that produces pulse limited footprint. The advancement in the accuracy, repeatability, and stability of satellite altimeters over the open ocean make them an irreplaceable tool for various ocean applications, including mapping ocean dynamics and circulations at high temporal and spatial scales.

However, in the vicinity of land near the coast, a number of issues arise when satellite altimetry attempts to monitor the sea level. The main issues are related to poorer geophysical corrections and artefacts in the altimeter return signals due to the existence of land within the altimeter footprint. In order to fulfil the increasing demand
for satellite altimetry observation in coastal zones, where a diversity of human activities occur, the new generation of the AltiKa satellite altimetry mission was launched on 25th February 2013 by the Indian Space Research Organization (ISRO)/Centre National d’Etudes Spatiales (Vincent et al., 2006; CNES,). The satellite mission provides opportunity from a space-borne Ka-band radar altimetry for nearly global (within +81.5° latitude bounds) synoptic mapping of ocean surfaces at monthly sampling (35-day repeat sun-synchronous orbit), and with higher spatial resolution (up to 40 Hz) than the present Ku-band (up to 20 Hz) altimetry such as Jason-1 and Jason-2. With the high rate along-track observations, the spatial resolution near the coast can be increased, thus enabling coastal observations much closer to the coast (Vincent et al., 2006).

The large bandwidth (500 MHz) in Ka-Band provides a better vertical resolution (~0.3m) than in Ku-Band (~0.5 m, Vincent et al., 2006). Moreover, the AltiKa satellite is equipped with a smaller antenna beam width (0.6°) than its successor mission of Envisat (1.29° for Ku-band and 5.5° for S band), thus producing a smaller size footprint (~4 km, Valladeau et al., 2014). Smaller footprint size contributes to the improvement of the spatial resolution and segregating the type of surface in transition zones, such as coastal regions and sea ice boundaries. Nevertheless, Ka-band frequency is sensitive to atmospheric conditions, which may cause significant atmospheric attenuation (Vincent et al., 2006). However, research by Tournadre et al. (2015) has found that the impact of atmospheric attenuation on the Ka-band signal on the AltiKa altimetry is not as severe as expected. When using a standard systematic flagging, 15% of data are flagged as bad. Of 15%, only 5.5% of data are affected by atmospheric attenuation.

In March 2015, there was a technical issue on the reaction wheels of AltiKa, which made it drift from the original orbit. Due to the situation, ISRO and CNES decided to pursue the mission with new phase called “SARAL-DP”, an abbreviation for AltiKa – Drifting Phase. Starting from July 2016, the AltiKa satellite flies freely and repetitive ground passes are no longer maintained (Bron et al., 2016). Since then, the AltiKa is referred to as a geodetic mission. The geodetic mission does not concern the repetitive orbit; the requirement of this mission is the high spatial resolution of data
collection over at least 95% of all available ocean coverage (Bronner and Dibarboure, 2012). It means that AltiKa will continue to provide valuable data for mesoscale and operational geography.

The Prototype for Expertise, an AltiKa for Coastal, Hydrology and Ice (PEACHI) project, is specifically conducted for the AltiKa mission. The aim is to perform a new retracking algorithm for the 40 Hz AltiKa data in order to improve the accuracy of estimates for scientific applications, such as coastal area, surface hydrology, ice, and open ocean (Poisson et al., 2013; Valladeau et al., 2014; Valladeau et al., 2015). The project utilised along-track Sensor Geophysical Data Record (SGDR) and Sensor Interim Geophysical Data Record (SIGDR) in its processing scheme.

The standard retracking algorithms used in SGDR and SIGDR data products are MLE-4, Ice-1 and Ice-2. The MLE-4 algorithm includes the second order Bessel function of the Brown (1977) model to account for the antenna mispointing angle (Amarouche et al., 2004; Thibaut et al., 2010). It estimates four parameters which are the range, slope of leading edge, power amplitude, and antenna off-nadir angle by fitting the model to the waveform. It is also capable of improving the range and slope of leading edge estimates, especially when the return pulses do not fully conform to the Brown model (Thibaut et al., 2010). This contributes to improving the accuracy and allows for measurements closer to the coastline. The Ice retracker is based on the statistics of the waveform shapes. It estimates two parameters, which are power amplitude and range (Idris and Deng, 2012). More information about retracking algorithms is discussed in Chapter 2.

This research has been conducted to provide necessary steps in defining the quantity and quality of AltiKa sea level in coastal region of Southeast Asia. It is to identify the reliability and capability of AltiKa datasets and find the optimal retracking algorithms over the coastal area of study region.
1.2 Issues with Coastal Altimetry Data for Mapping Sea Level

Conventional satellite altimetry (e.g. Jason-1, Jason-2 and ENVISAT) can provide highly accurate sea level measurement (in cm level) over the open ocean due to proper modelling of ocean state qualities (e.g. tides) and accurate measurement of atmospheric refractions (Bouffard et al., 2008). The satellite altimetry is capable of providing accurate information of ocean properties that can achieve an accuracy of up to 4 cm in height measurements (Challenor et al., 1996; Fu and Cazenave, 2001) and 2-3 cm in mean sea level variations (Gómez-Enri et al., 2008). However, in coastal regions, altimetry and its applications still face many challenges (e.g. Anzenhofer et al., 1999; Bouffard et al., 2010; Gommenginger et al., 2011; Vignudelli et al., 2011; Cipollini, 2013). The accuracy of sea level measurements decreases abruptly as the altimeter approaches the coast, where the sea conditions can diverge drastically over time and space.

An accurate sea level observation over the coastal region has been in great demand by the local scientific community for various applications. The desired accuracy of derived geophysical information varies depending on the applications. For example, the accuracy desired for measuring sea level rise is 1 mm/year and a 10 cm accuracy is required for detecting eddies in the East Australian Current system (Idris, 2014). The accuracy desired for measuring sea level rise is 1 mm/year over Malaysia seas (Md Din, 2010) and a 7.5 cm accuracy is required for detecting eddies in the South China Sea (Yi et al., 2014). With the current altimeter, the accuracy of sea level in the open ocean is at 2-3 cm. However, this value is higher towards the coast (Andersen and Scharroo, 2011).

Two major challenges of using satellite altimetry for monitoring the sea level in coastal regions (i.e. less than 10 km from the coastline) are: 1) waveform distortion due to non-ocean like reflection (land contamination), and 2) geophysical corrections for retrieving sea level.
The distortion of altimetric waveforms occurs due to the land contamination within the altimeter footprint and rapid changes in sea state. The altimetry data become unreliable as the sea floor topography becomes shallow abruptly and there are major surface changes rapidly between land and ocean (Brooks et al., 1998; Le Traon and Morrow, 2001; Deng et al., 2002; Idris and Deng, 2012). With the previous generation of radar altimeters (i.e., Jason-1, Jason-2 and Envisat), the coastal water is poorly observed within ~15 km of the shoreline (Deng et al., 2002; Idris and Deng, 2012) around the Australian coastal water, and within ~10 km around the South China Sea coastal water (Kuo et al., 2012).

When an altimeter encounters the transition zone (land-to-ocean or ocean-to-land), the altimeter footprint is partly over ocean and partly over land, making more waveform samples contaminated by non-ocean like reflection, as shown in Figure 1.2. The power received at a given gate is correlated with the relative fraction of sea and land areas in the corresponding footprint and with the reflective properties of each type of surface (Gommenginger et al., 2011). The lower panel of Figure 1.2 indicates the top-down view of the pulse-limited footprint corresponding to each waveform gate. It shows the relative proportion of ocean and land part in each of annuli away from the nadir point.

As the satellite approaches the coast, the altimeter waveform does not conform to the Brown model, and thus the general satellite on-board tracker system fails to precisely retrieve the geophysical parameters (Figure 1.3). As waveform samples are contaminated by non-ocean-like reflections, the high peaks show on the trailing edge (Gommenginger et al., 2011). This issue leads to erroneous estimates of the geophysical information, thus resulting in systematic flagging and rejection of altimetric data and leave a ‘data gap’ in the coastal zone (Idris, 2014).
Figure 1.2: (Top panel) Schematic representation of pulse-limited altimeter short pulse propagation from the altimeter to the sea surface in the case of an ocean-to-land transition. B is the bandwidth of the altimeter in unit of Hertz; c is the speed of light; c/(2B) is the altimeter sampling rate; H is the altimeter height; τ₁ and τ₂ are the epoch of the first and last measurement; and τ₀ is the epoch with respect to the nominal tracking position. (Lower panel) Top-down view of the pulse limited footprint corresponding to each waveform gate (adapted from Gommenginger et al., 2011).
Figure 1.3: Shape of waveform when approaching the coastline. The waveform (in red) does not conform to the Brown model when it gets close to the coast due to land contamination (adapted from COASTALT, 2015).

The retrieval of sea level from the altimeter measurement involves a number of corrections for geophysical signals and atmospheric attenuations. The geophysical corrections (e.g., tides and atmospheric corrections) and environmental corrections (e.g., sea state bias, ionospheric, dry and wet tropospherics) become less reliable as the altimeter approaches the coastline (Andersen and Scharroo, 2011). These contribute to the degradation of accuracy in SSH measurements.

The wet tropospheric refraction is the major source of error in altimeter-derived sea level anomalies (SLAs) near the coast. This is because over the coastal region (~50 km from the coastline) the emissivity of land is much higher than the ocean and the presence of warm land corrupts the humidity retrieval methods. This consequently degrades the accuracy of the correction (cf. Andersen and Scharroo, 2011). For handling this issue, two strategies have been proposed. The first consists of merging the data in the coastal zones to update and improve the radiometer-derived wet tropospheric correction in the coastal area, and the second consists of the correction of
the measured brightness temperatures for removing the contamination from the surrounding land (Obligis et al., 2011). Further explanations and the outcomes about those approaches can be found in the book Coastal Altimetry by Vignudelli et al., (2011), and in particular in the Chapter by Obligis et al., (2011).

Another altimetric correction that presents the most significant challenge over the coastal region is sea state bias (SSB) correction. The SSB error is due to the bias of altimeter range measurement toward the trough of ocean waves (Gommenginger and Srokosz, 2006; Andersen and Scharroo, 2011). The SSB correction is inferred empirically, based on the wind speed and the SWH is derived from the waveform shape itself (AVISO, 2009). The complication of determining SSB correction near the coast is due to the wind propagation and the changing shape of the ocean waves, along with the interaction between bathymetry and coastal topography. This condition creates noisy waveforms and SWH accordingly.

Tidal variation is also one of the most significant error sources over the coastal region. Large error (>10-20 cm) in tidal models and the model utilised to approximate the inverse barometer correction remain a challenge in this area. There are two tidal models that are currently available in the SGDR product: the 2D Finite Element Solution (FES2012) and the Ocean Tidal Model (GOT4.8). The FES2012 is an improvement of FES2004. It is based on an assimilation of satellite altimetry into a time-stepping finite element hydrodynamic model (Lyard et al., 2006; Carrère et al., 2012). The GOT4.8 is based on the sequence of empirical ocean tide models derived from altimeter data (Ray, 2008). Previous research suggests that the FES tidal model is the best model for the marginal sea area (e.g. Md Din, 2010; Md Din and Omar, 2012; Md Din et al., 2012; Md Din, 2014, Md Din, 2014).

There is also an issue with altimetric signal attenuation due to liquid water, such as rains and clouds. Due to wind and air flow, the distribution of rain is much higher over the coast than the open ocean. Radar altimetry signal can be strongly attenuated by light rain and small clouds, thus distorting the altimeter waveform (Tournadre, 1999). This can have a significant impact on geophysical parameter estimations and can cause 10-80% data loss (Tournadre et al., 2009).
Due to the low quality of altimeter geophysical retrieval, coastal data are usually systematically flagged and rejected. This makes the coastal water poorly observed, particularly within ~15 km of the shoreline (Deng et al., 2002; Idris and Deng, 2012). This flagged data, however, can be potentially recovered through the retracking method, and applying the newly developed geophysical corrections and processing schemes (e.g. Amarouche et al., 2004; Vignudelli et al., 2005; Lebedev et al., 2008; Bao et al., 2009; Idris and Deng, 2012; Idris, 2014) that optimise the estimation of geophysical parameters from the waveform on the ground processing. Retracking algorithms are developed to reprocess the original altimeter return signal by correcting the bias in estimation of geophysical parameters due to corrupted signals. A detailed explanation about the retracking algorithms is provided in Section 2.4.

The high rate along-track measurement of SSH offered by the AltiKa satellite altimetry mission should benefit the studies for understanding the sea level and its mesoscale variability. Thus, the exploitation of the AltiKa altimetry is needed for accurate mapping of coastal sea levels. This research is conducted to identify how much closer the retracked AltiKa sea level measurement can get to the coastline over the region of marginal seas in Southeast Asia, as well as to evaluate the precision and accuracy of the retracked sea levels over the experimental regions.

1.3 Research Questions

The research questions of the study are:

i. How much AltiKa sea level data can be recovered through the standard retracking algorithms?

ii. How much closer can the retracked sea level derived from the AltiKa Ka-band get to the coastline over the marginal seas of the Southeast Asia coastal region?

iii. How accurate is the retracked sea level from the AltiKa Ka-band satellite altimetry in the coastal region of Southeast Asia?
1.4 Aim and Objectives of the Study

The research aim is to evaluate the quality of coastal retracked sea level from SARAL/AltiKa satellite altimetry over the Southeast Asia region. The aim is accomplished through three (3) specific objectives:

i. To derive accurate SLAs from the AltiKa Ka-band based on three retracking algorithms of MLE-4, Ice-1 and Ice-2 in the SGDR data product;

ii. To assess the quantity and quality of retracked SLAs in identifying the optimum retracker for the marginal seas of Southeast Asia;

iii. To analyse the seasonal variability of SLA in Southeast Asia from the optimum retracked SLA in (ii).

1.5 Research Scope

In this research, the 40 Hz waveforms of the AltiKa satellite altimetry from cycles 1–19 (April 2013–December 2014) are utilised. It is realised that the altimetry data utilised in this study is in a short period. This is because, by the time this research started, only 19 cycle of AltiKa data are available. The study aims to derive a high resolution of sea levels above a reference ellipsoid from the SGDR retracked AltiKa data over the Southeast Asia region. The MLE-4, Ice-1, and Ice-2 retracking techniques are involved in the processing to derive sea level above a reference ellipsoid. These techniques should improve the accuracy of altimetry data sea levels near the coastal water.

The quantity of AltiKa data over the coastal region is assessed by comparing the AltiKa waveform and Jason-2 waveform at near parallel passes and crossover point, computing the percentage of data availability and the minimum distance of retracked sea level based of the number of valid datasets. This assessment can determine the capability of AltiKa in measuring the oceanic mesoscale variability over
the coastal region. This also can determine how much data can be recovered through those three retracking algorithms (i.e. MLE-4, Ice-1, and Ice-2), and how much closer the AltiKa retracked data can get to the coastline compared to Jason-2.

The quality of the AltiKa retracked sea level is assessed by comparing the retracked sea level with quasi-independent and independent data. The assessments involved are: 1) a relative validation of retracked sea level with geoid height, and 2) an absolute validation of retracked sea level with independent tide gauge data.

The first assessment is to compare the retracked sea level from the retracking algorithms (i.e., MLE-4, Ice-1 and Ice-2) with the geoid height based on the Earth Gravitational Model (EGM2008). The precision of the sea level is assessed based on the standard deviation of difference between the retracked sea level and the geoid, and also the improvement of percentage (IMP). The second assessment is to compare the retracked sea levels with in-situ tide gauge data. The precision between altimetric and in-situ sea level measurement is determined by assessing the value of correlation coefficient, and the accuracy of the altimeter sea level is determined by assessing the root mean square error. These assessments are conducted to identify the reliability and accuracy of the retracked datasets, and to determine which retracker is the optimum for the study regions.

The derived sea level from the optimum retracker are mapped to analyse the seasonal variability of the sea level. This is to understand the spatial and temporal variability of sea level and to investigate the impact of Southwest monsoons and Northeast monsoons on the amplitude of the sea level over the region.

1.6 Significance of the Study

Nowadays, demand for accurate altimetry data over the coastal area, particularly the sea level, has risen since human activities are concentrated over this region. The increasing demand for coastal altimetry encompasses a wide range of
applications such as hydrology, coastal erosion, cryosphere application, and flood risk appraisal. This results in much innovative research for improving coastal altimetry data. The no-data gap in coastal regions have been reduced from ~50 km to ~10 km from the coastline through various research in the last few years (e.g., Brooks et al., 1997; Amarouche et al., 2004; Deng and Featherstone, 2006; Idris and Deng, 2012, Babu et al., 2015; Birol and Niño, 2015; Abdullah et al., 2016). Nonetheless, the improvement of altimetry data is still challenging within ~10 km from the coastline (Idris, 2014), which is linked to the condition of land topography, rough/calm coastal sea state, and land contamination within the altimetry footprint. Therefore, this research provides a necessary step to derive accurate SLAs from AltiKa satellite altimetry. The framework developed in this research should enable the derivation of accurate sea levels over the Southeast Asia regions.

Moreover, much information can be retrieved by bringing the altimetry data closer to the coastline, exclusively in environmental sustainability for coastal management. Since human activities are primarily concentrated in coastal areas, studies about sea levels using satellite altimetry would give advantages, especially in engineering activities along the shoreline, and will hopefully benefit economic and recreational activities.

The launch of the AltiKa satellite mission promises a significant refinement of coastal altimetry, with advanced instruments, an improved retracking algorithm, and geophysical corrections (Cipollini, 2013; Prandi et al., 2015; Ratheesh et al., 2015; Schwatke et al., 2015; Verron et al., 2015). The validation and calibration for the satellite mission are compulsory to find the level of confidence on the data quality before it can be used in any applications. Global calibrations for AltiKa have been conducted by CNES, ISRO, and many other researchers (e.g., Gómez-Enri et al., 2008; Abdalla, 2015; Prandi et al., 2015; Tournadre et al., 2015; Verron et al., 2015). However, limited research focuses on the regional validation over Southeast Asia (e.g. Idris et al., 2014b; Idris et al., 2014c; Abdalla, 2015; Abdullah et al., 2015; Mohammed et al., 2015). The regional validation is important because the ocean characteristics of the region are significantly different than the other oceans, such as the Pacific and Atlantic Ocean. It is characterized by marginal and semi-closed oceans.
that contain many small islands and a broad range of topographic features, thus producing complicated waveform patterns when they enter the altimeter footprints. Therefore, this research is conducted to quantify the quality of sea levels derived from the AltiKa over the Southeast Asia region.

1.7 Thesis Outline

The thesis consists of seven chapters. Chapter 1 introduces the background of the research. Current issues associated with coastal altimetry are discussed and the objectives of the research are addressed. This study is mainly established for the marginal seas of Southeast Asia. Five seas are involved, including the Andaman Sea, the Gulf of Thailand, the Strait of Malacca, the South China Sea, and the Sulu Sea. This study is applied to the five different seas to identify its performance and applicability in different coastal regions.

Chapter 2 discusses the issues of satellite altimetry for ocean geophysical studies. The derivation of sea level from altimetry and the re-tracking algorithms utilised in this study are reviewed and discussed. The chapter also discusses the recent research conducted by international organisations and researchers in bringing altimeter measurements closer to the coastline.

Chapter 3 describes the research framework and methodology. The details about data pre-processing, data processing, derivation of sea level from the AltiKa satellite, and tide gauge measurements are provided in this chapter. The validation protocol and SLAs mapping are also described in detail.

In Chapter 4, the quantity of the AltiKa ret-racked sea level over the five regions is evaluated. The evaluation is based on:

i. The comparison of AltiKa Ka-band waveform patterns and Jason-2 Ku-band over the coastal area. Through this comparison, the impact of land contamination in coastal zones on both satellite returned signals can be
REFERENCES

over Indian Ocean and its real-time application in wave forecasting system at ISRO. *Marine Geodesy.* 38 (sup1), 396-408.

A Short Summary of the 9th Coastal Altimetry Workshop, Workshop, C. A.
CNES (2010). Coastal and hydrology altimetry product (PISTACH) handbook. (1.0), 64.

Idris, N. H., Maharaj, A., Abdullah, N. N., Deng, X. and Andersen, O. B. (2014b). A Comparison of Saral/Altika Coastal Altimetry and In-Situ Observation Across Australasia and Maritime Continent. SARAL/AltiKa Workshop. 27-31 October 2014. Lake Constant, Germany,

Zhang, T., Yang, S., Jiang, X. and Zhao, P. (2016). Seasonal–Interannual Variation and Prediction of Wet and Dry Season Rainfall over the Maritime Continent:

