DETERMINATION OF SHALLOW SUBSTRATE FROM SATELLITE REMOTE SENSING DATA WITH BIO-OPTIC BASED ALGORITHM

NORIN NAZIRA BINTI HAMID

UNIVERSITI TEKNOLOGI MALAYSIA
DETERMINATION OF SHALLOW SUBSTRATE FROM SATELLITE REMOTE SENSING DATA WITH BIO-OPTIC BASED ALGORITHM

NORIN NAZIRA BINTI HAMID

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Remote Sensing)

Faculty of Built Environment and Surveying
Universiti Teknologi Malaysia

AUGUST 2018
DEDICATION

This work is dedicated to my beloved

parents Hamid bin Keling and Asmah binti Isnin,
my caring sister Azwa Hashima and Nadia Nurulzanna,
my responsible younger brothers Aidia Nadzir and Nur Aqib
and my soulmate
my husband Mohd Samsuri Md Nor
and little caliph Nur Raisha Sofia binti Mohd Samsuri

…..thank you for your great love and supports…..
ACKNOWLEDGEMENTS

Assalamualaikum w.b.t.;

Alhamdulillah. Praise to Allah for His permission for letting me to finish my thesis. Instead of that, true support from the organization and people around make this work success. I might not easily finish this thesis without these true supports. Firstly, I would like to give a special thanks to my supervisor, Prof. Sr. Dr. Mazlan Hashim who always teach, encourage, share experience and tips and be patient to me in order to help me to finish this thesis. I would also like to thank Nurul Nadiah bt Yahya and Syarifuddin bin Misbari, my seagrass team for their support and kindness in sharing their experiences and supporting me in many ways.

My thanks also go to my lecturers who have taught me during the course. To all the staff of INSTEG and other staff in the Faculty of Geoinformation and Real Estate, thank you for your support. Instead of that, thanks to my labwork friends and student under the same supervisor. They are very kind in supporting, share knowledge and guide to become a good writer and student.

Also, my thanks to all my friends, especially in the Remote Sensing course who have always taught me on image processing and constantly gave full support during stressful times. Finally, I am thankful to my beloved husband Mohd Samsuri Md Nor and my daughter Nur Raisha Sofia binti Mohd Samsuri, my parents Mr. Hamid bin Keling and Mrs. Asmah binti Isnin and my sisters and brothers for their love and advice to me. They are my inspirations.
Remote sensing techniques have been widely used for extraction of coastal information including the sea surface, in the water and within beneath of shallow substrates. The coastal water where the substrates are found is classified into ‘case 1’ and ‘case 2’. They are differs based on the water constituents such as phytoplankton, suspended particulate matter (SPM) and coloured dissolved organic materials (CDOM). The interactions of incoming radiance and water-leaving irradiance within the water in both these coastal types have been formulated in the bio-optic algorithm. The bio-optical algorithm has been previously used in mapping ocean-colour, mapping total suspended matter (TSM) and deriving water properties. In this study, the applicability of bio-optical algorithm was examined and analysed over coastal water for detection and mapping of shallow substrates using satellite remote sensing data. Two satellite data sets examined are: (i) the fine resolution Worldview-2, and (ii) medium resolution Landsat-8 OLI, with 0.5m and 30m spatial resolution respectively. The test sites were conducted in Pulau Tinggi and Pulau Merambong, Johor that representing the coastal type I and II as well as the shallow (less than 20m) and deep areas (less than 40m). In-situ samples consisted of seagrass, seaweed, coral, mud, sand and ancillary information on water depth were divided into two independent mutual sets and used as input to the algorithm and the respective validations. The results indicated that shallow substrates could be extracted at 91.6 percents overall accuracy with 0.55 of kappa coefficient (k), hence showing good agreement at Pulau Merambong. However, at Pulau Tinggi, the overall accuracy of substrates derived at 52.17 percent (k = 0.33) and 42.22 percent (k=0.26) for Worldview-2 and Landsat OLI, respectively. It is therefore concluded that the bio-optical algorithm has been identified as restricted on deeper water even on the clearer water (type 1) with less TSM. Hence, the potential of bio-optical algorithm for mapping shallow (less than 20m) substrates within Malaysian coastal water is very high with the improvement of water-leaving radiance from deep water model.
ABSTRAK

Teknik penderiaan jauh telah digunakan dengan meluas untuk mengekstrak maklumat pantai merangkumi permukaan laut, di dalam ruang air dan di bawah substrat cetek dalam laut. Substrat yang dijumpai di dalam ruang air laut dikelaskan kepada ‘kes 1’ dan ‘kes 2’. Ianya berbeza berdasarkan unsur air seperti fitoplankton, zarah bahan terampai (SPM) dan bahan organik larut air (CDOM). Interaksi terhadap sinaran masuk dan pembalikan sinaran air keluar di dalam ruang air bagi kedua-dua jenis pantai telah diformulasikan di dalam algoritma bio-optik. Algoritma bio-optik telah digunakan dalam pemetaan warna kelautan, pemetaan jumlah bahan terampai (TSM) dan menerbitkan sifat-sifat air. Di dalam kajian ini, kebolehan algoritma bio-optik dikaji dan dianalisa terhadap air pantai untuk mengesan dan memetakan substrat di air cetek menggunakan data satelit penderiaan jauh. Dua data satelit yang diuji adalah i) Worldview-2 beresolusi tinggi ii) Landsat-8 OLI beresolusi sederhana dengan masing-masing mempunyai spatial resolusi 0.5 meter dan 30 meter. Kawasan kajian adalah di Pulau Tinggi dan Pulau Merambong, Johor yang mewakili pantai jenis 1 dan 2 dengan kecetekan kurang 20m dan kedalaman kurang 40m. Sampel data lapangan merangkumi rumput laut, rumpai laut, batu karang, lumpur, pasir dan maklumat sampingan mengenai kedalaman air yang dibahagikan kepada dua set tidak bersandar dan digunakan sebagai input kepada algoritma dan pengesahan. Keputusan menunjukkan substrat cetek boleh diekstrak adalah 91.6 peratus dengan keseluruhan ketepatan adalah 0.55 pelaki kappa (k) dan seterusnya menunjukkan persetujuan yang baik di Pulau Merambong. Walau bagaimanapun, di Pulau Tinggi diperoleh keseluruhan ketepatan bagi substrat adalah 52.17 peratus (k=0.33) dan 42.22 peratus (k=0.26) masing-masing untuk Worldview-2 dan Landsat OLI. Oleh itu, dapat disimpulkan bahawa, algoritma bio-optik telah dikenalpasti adalah terhad terhadap air dalam walaupun pada air jernih (jenis 1) dengan TSM yang kurang. Maka, potensi algoritma bio-optik untuk pemetaan substrat cetek (kurang 20m) di perairan pantai di Malaysia adalah sangat tinggi dengan penambah baikan terhadap model pembalikan sinaran keluar dari air dalam.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives of Study 4
1.4 Scope of study 4
1.5 Study area 6
1.6 Significance of Study 9
1.7 Thesis Structure 11

2 LITERATURE REVIEW

2.1 Introduction 13
2.2 The concept of bio-optic algorithm 14
 2.2.1 Inherent optical properties 14
 2.2.2 Apparent optical properties 15
 2.2.3 Case 1 and case 2 waters 16
2.3 The bio-optic techniques and it applications 18
 2.3.1 Bio-optic techniques 18
 2.3.2 Bio-optic applications 21
2.4 Selective bio-optical optimization technique
 used for mapping sea bottom substrate 22
2.5 Summary 27

3 RESEARCH METHODOLOGY

3.1 Introduction 30
3.2 Data Sources and Materials 31
 3.2.1 Satellite Image 31
 3.2.2 Hydrographic map 35
 3.2.3 Tidal Chart 36
 3.2.4 In situ data 38
3.3 Data Pre-processing 38
 3.3.1 Satellite Images 40
 3.3.1.1 Pan-sharpen 40
3.3.1.2 Image Subset 43
3.3.1.3 Image Masking 44
3.3.1.4 Sunglint Removal 47
3.3.1.5 Conversion of DN to Radiance 54
3.3.1.6 Conversion of Radiance to TOA reflectance 57
3.3.2 Hydrographic map 61
3.3.3 Insitu data 64
3.4 Data Processing 66
 3.4.1. Bio-optic algorithm 66
 3.4.2. Image Classification 68
3.5 Analyses method 69
3.6 Summary 70

4 RESULTS, ANALYSIS AND DISCUSSION
4.1 Introduction 71
4.2 Results 71
 4.2.1 Image Pre-processing 72
 4.2.2 Image processing 73
 4.2.2.1 Bio-optic algorithm 73
 4.2.2.2 Image classification 76
 4.2.3 Image map 78
4.3 Analysis 82
 4.3.1 Transection analysis 82
 4.3.2 Confusion Matrix 86
4.4 Discussion 95
4.4.1 Combinations of band 95
4.4.2 Water Tidal 96
4.4.3 Water Leaving Radiance/reflectance 96
4.4.4 Bio-optic Algorithm 97
4.5 Summary 97

5 CONCLUSIONS AND RECOMMENDATION

5.1 Conclusions 98
5.2 Recommendations 100

REFERENCES 101-109

APPENDICES 110-143
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of endangered species in Malaysia ocean</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Formulation of empirical algorithm</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Review on previous study on bio-optic technique and its applications</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Satellite imagery information</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Worldview-2 specification</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>Landsat-8 (OLI) specification</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Absolute radiometric calibration and effective bandwidth for Worldview-2 image</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Worldview-2 Band-Averaged Solar Spectral Irradiance</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Level of agreement of Kappa coefficient</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>Omission and Commission errors at Merambong Island</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Omission and Commission errors at Tinggi Island (Worldview-2)</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Omission and Commission errors at Tinggi Island (Landsat-8)</td>
<td>90</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Area of study</td>
</tr>
<tr>
<td>1.2</td>
<td>Tinggi Island area</td>
</tr>
<tr>
<td>2.1</td>
<td>Diagram shows the schematic representation of the optical relationship of the coastal zone ecosystem and influence by the sunlight.</td>
</tr>
<tr>
<td>2.2</td>
<td>Worldview-2 satellite spectral bands (Globe 2010)</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of sun glint in a variety of optical imagery.</td>
</tr>
<tr>
<td>3.1</td>
<td>Satellite Worldview-2 images</td>
</tr>
<tr>
<td>3.2</td>
<td>Satellite Landsat-8 images</td>
</tr>
<tr>
<td>3.3</td>
<td>Hydrographic map (digitized) at Merambong Island (a) and Tinggi Island (b), Johor, Malaysia</td>
</tr>
<tr>
<td>3.4</td>
<td>Tidal chart of (a) Merambong Island and (b) Tinggi Island</td>
</tr>
<tr>
<td>3.5</td>
<td>Instruments used to collect in situ data; (a) GPS (Garmin) and (b) Spectroradiometer</td>
</tr>
<tr>
<td>3.6</td>
<td>Methodology flow chart</td>
</tr>
</tbody>
</table>
3.7 Worldview-2 multispectral image with 2 meter spatial resolution at Merambong area.

3.8 Worldview-2 panchromatic image with 0.5 meter spatial resolution at Merambong area.

3.9 Worldview-2 multispectral image with 2 meter spatial resolution at Tinggi Island area.

3.10 Worldview-2 panchromatic image with 0.5 meter spatial resolution at Tinggi Island area.

3.11 Result of Worldview-2 pan-sharpen images

3.12 Subset of satellite image for Tinggi Island area

3.13 Image masking to land

3.14 Masked images of satellite data

3.15 Sun glint occurs by the red line

3.16 Relationship between RGB band width and NIR band width for satellite imagery at Merambong Island.

3.17 The relationship between RGB band width and NIR band width for satellite imagery at Tinggi Island.

3.18 Images of Band 2 (blue), Band 3 (green), Band 5 (red) before sunglint removal (left) and after deglinted (right) and images after combining RGB band for deglinted process for both (a) Merambong Island and (b) Tinggi Island

3.19 Radiance images by band for Merambong area

3.20 Radiance images by band for Tinggi Island area for Worldview-2 image

3.21 Radiance images of band combination RGB for
Merambong (a) and Tinggi Island (b) for Worldview-2 image.

3.22 Reflectance images by band for Merambong area

3.23 Reflectance images (Worldview-2) by band for Tinggi Island area

3.24 Reflectance images (Landsat-8) by band for Tinggi Island area

3.25 Reflectance images of band combination RGB for Merambong (a), Tinggi Island (b) for Worldview-2 and Tinggi Island (c) for Landsat 8

3.26 Water depth point data.

3.27 Bottom depth images for Merambong (a) and Tinggi Island (b)

3.28 In situ data using underwater camera

4.1 Bio-optic images of Merambong Island for Band 2, Band 3 and Band 5

4.2 Bio-optic images of Tinggi Island (Worldview-2) for Band 2, Band 3 and Band 5

4.3 Bio-optic images of Tinggi Island (Landsat-8) for Band 2, Band 3 and Band 4

4.4 Maximum likelihood classification image at Merambong Island

4.5 Maximum likelihood classification image (Worldview-2) at Tinggi Island

4.6 Maximum likelihood classification image (Landsat-8) at Tinggi Island

4.7 Map of sea bottom substrate (left) and bottom depth (right) at Merambong Island, Johor, Malaysia
4.8 Map of sea bottom substrate (left) and bottom depth (right) at Tinggi Island, Johor, Malaysia (Worldview-2)

4.9 Map of sea bottom substrate (left) and bottom depth (right) at Tinggi Island Johor, Malaysia (Landsat-8),

4.10 Transection area for Merambong area

4.11 Transection chart for the respected area

4.12 Overall accuracy by band combination versus percentage

4.13 Kappa coefficient between area and level of agreement

4.14 Producer and user accuracy of substrate features for combination of Band 2 and Band 3 at Merambong Island

4.15 Producer and user accuracy of substrate features for combination of Band 3 and Band 5 at Merambong Island

4.16 Producer and user accuracy of substrate features for combination of Band 2 and Band 3 at Tinggi Island (Worldview-2)

4.17 Producer and user accuracy of substrate features for combination Band 3 and Band 5 at Tinggi Island (Worldview-2)

4.18 Producer and user accuracy of substrate features for combination band 2 and 3 at Tinggi Island (Landsat-8)

4.19 Producer and user accuracy of substrate features for combination band 3 and 4 at Tinggi Island (Landsat-8)
LIST OF ABBREVIATIONS

ADEOS-II : Advanced Earth Observation Satellite II
AOP : Apparent Optical Properties
BRI : Bottom Reflectance Index
CASI : Compact Airborne Spectral Imager
CDOM : Coloured Dissolved Organic Matter
CZCS : Coastal Zone Color Scanner
DIB : Depth-Invariant Bottom
DII : Depth Invariant Index
DN : Digital Number
ETM : Enhanced Thematic Mapper
GLI : Global Imager
GPS : Global Positioning System
GSD : Ground Sample Distance
IOP : Inherent Optical Properties
MERIS : MEedium Resolution Imaging Spectrometer
MSS : Multi Spectral Sensor
NIR : Near Infrared
OCTS : Ocean Color and Temperature Sensor
OLI : Operational Land Imagery
Pan : Panchromatic
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>Red, Green, Blue</td>
</tr>
<tr>
<td>SPM</td>
<td>Suspended Particulate Matter</td>
</tr>
<tr>
<td>SPOT</td>
<td>Satellite Pour l’Observation de la Terre (French) or Satellite for Observation of Earth</td>
</tr>
<tr>
<td>SWIR</td>
<td>Short-wave Infrared</td>
</tr>
<tr>
<td>TIRS</td>
<td>Thermal Infrared Sensor</td>
</tr>
<tr>
<td>TM</td>
<td>Thematic Mapper</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of Atmosphere</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible</td>
</tr>
<tr>
<td>WCR</td>
<td>Wider Caribbean Region</td>
</tr>
<tr>
<td>WGS</td>
<td>World Geographical System</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

R - Irradiance reflectance

r_{rs} - Remote sensing reflectance

P - Probability

L_i(VIS)' - Deglinted image

L_i(VIS) - Pixel value in band i

B_i - Regression slope

L_i(NIR) - Pixel value in NIR band

L_{min}(NIR) - Minimum pixel value in NIR band

ρ_λ - TOA reflectance values

L_λ - TOA radiance value

θ_s - Solar Zenith angle

d$_{ES}$ - Earth-Sun distance

α - Total absorption coefficient

β_b - Total backscattering coefficient

ρ - Bottom reflectance
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Illumination</td>
</tr>
<tr>
<td>θ_w</td>
<td>Viewing geometry</td>
</tr>
<tr>
<td>H</td>
<td>Bottom depth</td>
</tr>
<tr>
<td>a_w</td>
<td>Absorption of water</td>
</tr>
<tr>
<td>a_ϕ</td>
<td>Absorption of phytoplankton</td>
</tr>
<tr>
<td>a_{spm}</td>
<td>Absorption of suspended particulate matter</td>
</tr>
<tr>
<td>a_{cdom}</td>
<td>Absorption of coloured dissolved organic matter</td>
</tr>
<tr>
<td>b_w</td>
<td>Backscattering of water</td>
</tr>
<tr>
<td>b_ϕ</td>
<td>Backscattering of phytoplankton</td>
</tr>
<tr>
<td>b_{spm}</td>
<td>Backscattering of suspended particulate matter</td>
</tr>
<tr>
<td>Λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>Z</td>
<td>depth</td>
</tr>
<tr>
<td>CHL</td>
<td>Chlorophyll concentration</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bottom Depth Of Merambong Island</td>
<td>110</td>
</tr>
<tr>
<td>B</td>
<td>Bottom Depth Of Tinggi Island</td>
<td>114</td>
</tr>
<tr>
<td>C</td>
<td>Satellite Worldview-2 Metadata File At Merambong Island</td>
<td>117</td>
</tr>
<tr>
<td>D</td>
<td>Satellite Worldview-2 Metadata File At Tinggi Island</td>
<td>123</td>
</tr>
<tr>
<td>E</td>
<td>Sea Substrate data</td>
<td>129</td>
</tr>
<tr>
<td>F</td>
<td>Insitu Data at Merambong Island</td>
<td>131</td>
</tr>
<tr>
<td>G</td>
<td>Insitu Data at Tinggi Island</td>
<td>142</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Remote sensing technique has been broadly used to extract remotely information by using a sensor, attached to a flying object at different levels of height from the surface of the earth. It is widely used in many applications involving land, atmosphere and ocean studies. A mathematical equation can be applied to the remote sensing method to generate a new algorithm to extract information. Furthermore, these algorithms are useful in producing accurate output.

In this study, the satellite remote sensing data, Worldview-2 and Landsat OLI (Operational Land Imager) were used for processing imagery and developing the mathematical equation namely bio-optic-based algorithm and then applied to the data. The water substrate function can be found in the algorithm. Thus, the algorithm was used to characterize the underwater substrates and study the bio-physical oceanography attributes.

Bio-optic is defined as a process where the sun radiates the energy to the surface of the water and transferred into the water column. Upon reaching the sea bottom, the energy is then reflected back and reaches the sensor. During this process,
some energy is scattered and absorbed by the air and water particles. However, these elements for each coastal and sea water are different from one another. The backscattering and the absorption of water particles as well as water depth, have become the main elements that influence the bio-optic parameters. Thus, the bio-optic-based algorithm was applied to detect the water substrates available at shallow depth.

In the ocean environment, the optical properties can be divided into three major groups: (1) phytoplankton, (2) suspended particulate matters (SPM), and (3) yellow substances (commonly known as coloured dissolved organic matter; CDOM). On the contrary, for the coastal study, the optical properties are more complex because of the water constituents and ocean current. Life and activities near the coastal areas, such as the development areas, the industrial areas or tourism areas trigger to the complexity of optical properties across the coastal areas.

In the scope of bio-optic studies, the ocean water optical properties can be categorised into two: ‘Case 1’ and ‘Case 2’. In Case 1, only phytoplankton plays an important role in the variations of the water optical properties, whereas in Case 2 water, the properties of the water not only influenced by phytoplankton but also by the suspended particles and yellow substances. Therefore, this study will focus on Case 2 waters at shallow depth.

The scattered sunlight before reaching the water surface is affected by the atmospheric constituents before reaching back to remote sensor. Therefore, in case of Case 2 water, the atmospheric correction is essential. The water-leaving signal decreases because of the absorption and scattering of water molecules and various materials present in the water. Remote sensing technique provides spatially and temporarily high-resolution data which is better in terms of time consumed and crucial compared to other conventional approaches. Furthermore, remote sensing technique can potentially produce information in broad-scale map especially in ocean management, biodiversity assessment, and ecosystem monitoring (Pearce and Pattiaratchi, 1997).
Most studies which used the bio-optical algorithm in detecting chlorophyll and ocean colour were conducted in and off Malaysian waters. A study was conducted in Peninsular Malaysia’s waters on bio-optical properties and its application for ocean colour algorithm (Bowers et al., 2012). Besides, outside Malaysia, a study was also conducted in Brazil on implications of bio-optical properties to the ocean colour algorithm (Carvalho et al., 2014). Moreover, a study conducted by Orek (2013) used concept of bio-optic to determine the inherent optical properties during the period of maximum runoff at Lena River (northern Siberia, Russia). There was also a study conducted in discriminating sea bottom features by using different water column correction methods, such as depth invariant index (DII), bottom reflectance index (BRI), and different satellite data. However, the bio-optic algorithm, used in this study to detect the sea bottom substrates, was the first time effort.

1.2 Problem Statement

Understanding water column properties of coastal water is very crucial in the remote sensing feature extractions of substrates. These substrates include seagrass, benthic mud, coral, seaweed, and other pertinent features to coastal and marine ecology. Interaction of irradiance into the water column is best described by the bio-optic algorithm.

Within the water column, the interactions of radiative sunlight with suspended sediments, turbidity, and other water properties including the returns from the bottom’s surfaces have been formulated in various bio-optic algorithms. In fact, the bio-optic algorithm has been used for extraction sediments such as phytoplankton from remote sensing data. However, the return from sea bottom substrates is rarely reported. Hence, this thesis is address the applicability of bio-optic algorithm for detecting and mapping shallow coastal substrates with high resolution satellite data.
1.3 Objectives of Study

The main objective is to produce a sea bottom map in Merambong Island and Tinggi Island using the bio-optic algorithm. Specific objectives of this study are:

(i) to investigate the suitability of the selected bio-optic algorithms for detecting shallow sea-bottom substrates;
(ii) to formulate and assess the suitability of the selected bio-optic algorithm for shallow coastal water with high-resolution satellite data; and
(iii) to verify the relationship between water constituent of bio-optic algorithm and substrate leaving radiance/reflectance, and to map the sea bottom features of Merambong and Tinggi Island area.

1.4 Scope of Study

The scope of this study are as follows:

(i) Bio-optic-based algorithm was chosen in this study due to its high potential to determine water substrate at shallow water area and impressively in complex water type at two different areas. They were located at Merambong Island; south part of Peninsular Malaysia, exactly at Johor Straits and the other area is at Tinggi Island; located further east of Johor. Previous studies used depth invariant index (DII) and bottom reflectance index (BRI) to detect the water substrate at the eastern Peninsular Malaysia (Rasib and Hashim, 1997; Nurul, 2012), whereas some studies used different method which was bio-optic algorithm at the same site for different purposes, which is to study the sea colour.
The selected bio-optic-based algorithm had been analysed as best fit with high-resolution data. This was proven by Lyons (2011) who used Quickbird data as their high spatial resolution data which potentially provide coastal information routinely. In this study, the satellite Worldview-2 data with high spatial resolution was used. Furthermore, the satellite imagery with good bandwidth penetration can penetrate through the shallow water and near the coastal area that contains numerous suspended sediment and particles. Even so, the satellite imagery still provides good results, with less time consuming, cheaper and more outgoing especially on ocean study, where the point location is not easily pinned and a huge area to cover as compared to fieldwork observation.

The relationship between the water properties and the sea bottom substrates was studied. The bio-optic algorithm used was a mathematical equation that combines with many parameters. Some of the parameters, such as water properties and depth will affect the water leaving radiance/reflectance. Thus, this study will investigate the relationship between the water parameters, such as the depth and clarity, and different type of areas and conditions. Merambong Island is near to an industrial area and under development while Tinggi Island is a tourism area (Marine Park) and reserve forest. Finally, the maps of sea bottom substrate for both Merambong Island and Tinggi Island were produced.

Substrate in marine biology is define as the earthy materials in the bottom of a marine habitat like dirt, rocks, sand and gravel. However, in this study the substrate refer to seagrass, seaweed, coral/mud and sand.

Shallow water area where we start to feel a wave on the seabed, longer wavelengths and period swells. In this scope, shallow water areas refer to depth below 20 meter from the seabed.
1.5 Study area

Two study areas were selected in this study, which are Merambong Island located at the south-east part of Johor coastal waters at the Straits of Johor and Tinggi Island, Mersing located at the east part of Johor coastal water, facing the South East China Sea as shown in Figure 1.1. Merambong Island is closely located to Tanjung Adang, Tanjung Kupang and Tanjung Pelepas Port (PTP). They are surrounded by narrow and busy navigational channel. Merambong Island is also known as habitat of seagrass species where nine species can be found (Japar et al., 2006).

In contrast, the physical characteristic of Tinggi Island is well known as tourism area with good quality of water and was chosen for Marine Park. It has also become a protected area for coral habitat and other marine life.

There is a new development near the Merambong Island and this certainly will disturb the marine habitat such as dugongs. As a result, many suspended sediments under the sea water will be produced. Human activities such as land reclamation for building a port, chalet or floating restaurant, sand mining, transportation avenues and oil pollution have destroyed most of the marine life habitats (Japar et al., 2006). Merambong can be a very important area in the future as this area is rich in marine organisms, such as gastropods, seaweeds, sea cucumbers, commercial fishes, and echinoderms. As a matter of fact, Merambong has become a good fishing spot for fishermen to catch fishes as one of their major income source. Additionally, it is the feeding ground of dugongs and birds, gleaning site for bivalves, and nursery ground for vertebrates and invertebrates that portray its uniqueness.
Figure 1.1 Area of study

a) Merambong Island, Johor, Malaysia
b) Tinggi Island, Johor, Malaysia
On the other hand, Tinggi Island was developed as a tourism area with the attraction of Marine Park such as Jahat Island, Ceben Island, Babi Tengah Island, Babi Hujong Island, Babi Besar Island, Gual Island, Sibu Hujong Island and Mentigi Island as referred to the Establishment of Marine Parks Malaysia (Amendment) Order 2012. These small islands have become the source of economic development of Malaysia. Various underwater activities such as snorkelling and diving can be offered because of the clear and shallow water (Figure 1.2).

Figure 1.2 Tinggi Island area
(Source: Marine Park Malaysia, 2012)
1.6 Significance of Study

Due to the development in the area, Merambong Island is facing challenges when the area is dumped by sand, consequently, degrading habitats of seagrass, flora, fauna and other marine life that play an important role in stabilising the marine ecosystem. The water substrate will increase significantly as this happens. Even the Fisheries Act 1985 stated that permission is required to import or export fishes from the port (https://www.dof.gov.my). This endangers the marine life in that area. This study aims to map the area that has the potential to be highly destructive by the sea water substrate and provide earlier information to the fishery industry, marine scientists and tourism industry. This information is beneficial as the Merambong Island is in a developing phase to become an attractive place.

The importance of study on Case 2 focused on the values of economic, social and ecological significance. Therefore, it is important to study existing condition of the water substrate so that the stabilisation of the ecology in the potential area can be maintained for various purposes. Furthermore, the coastal water is important for the ecological zone where it has become the habitat for fishes, seaweeds, seagrasses, sea animals, sea shelves, coral reefs, dugongs, seahorses and other living organisms. Figure 1.3 shows the example of marine life in Anthozoa class such as coral, the threatened species that has been protected under International Trade in Endangered Species Act of 2008 act 686.
Table 1.1: Example of endangered species in Malaysia ocean

<table>
<thead>
<tr>
<th>CLASS ANTHOZOA (CORALS, SEA ANEMONES)</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIPATHARIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antipatharia spp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELIOPORACEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family: Helioporidae (Blue coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helioporidae spp.</td>
<td></td>
<td></td>
<td>[Includes only the species Heliopora coerulea. (Fossils are not subject to the provisions of the Convention)]</td>
</tr>
<tr>
<td>SCLERACTINIA (Stony coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family: Scleractinia (Stony coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleractinia spp.</td>
<td></td>
<td></td>
<td>[Fossils are not subject to the provisions of the Convention]</td>
</tr>
<tr>
<td>STOLONIFERA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family: Tubiporidae (Organ-pipe coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubiporidae spp.</td>
<td></td>
<td></td>
<td>[Fossils are not subject to the provisions of the Convention]</td>
</tr>
<tr>
<td>CLASS HYDROZOA (SEA FERNS, FIRE CORALS, STINGING MEDUSAE)</td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>MILLEPORINA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family: Milleporidae (Fire coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milleporidae spp. (Fossils are not subject to the provisions of the Convention)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STYLASTERINA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family: Stylasteridae (Lace coral)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylasteridae spp. (Fossils are not subject to the provisions of the Convention)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Source: Laws of Malaysia, 2008)
1.7 Thesis Structure

This thesis consists of five chapters: Chapter 1 (Introduction), Chapter 2 (Literature review), Chapter 3 (Methodology), Chapter 4 (Results and Discussions) and Chapter 5 (Conclusions and Recommendations).

Chapter 1 describes the fundamentals and background study, problem statement, objectives, the scope of the study, study area and significance of the research. This chapter also describes briefly on the concepts and the difference between present study compared to previous studies.

In order to relate the concept of this study as stated in Chapter 1, literature reviews on previous studies have been presented in Chapter 2. Chapter 2 discusses previous studies on remote sensing data suitability for shallow water substrate and bio-optical-based algorithm in a different perspective, as well as the application of bio-optic-based algorithm used in this study.

After reviewing the previous studies, Chapter 3 explains the method used in this study in detail including the processing data technique and materials used to carry out this study, especially during the data acquisition and laboratory work. This chapter also explains the pre-processing steps such as satellite data correction and extracting substrate information.

The analysis and discussion of the results obtained are written in Chapter 4. The results are shown in detail for every processing, and comparisons were made where the difference in each processed data were discussed. The output/results were analysed using two different way; transection and confusion matrix, to clearly observe the findings of this study. In addition, comparison of this study with previously related studies, also discussed.
Finally, the conclusions and recommendations are given in Chapter 5. The conclusions were drawn based on the objectives of the study, either it has fully fulfilled the objectives or needed any enhancement. Thus, some recommendations were made to provide ideas for further researches for improving this study.
References

Alsubaie N. M. (2012). The potential of using Worldview-2 imagery for shallow water depth mapping. Master of Science, University of Calgary

Akta Peraturan Perintah Penubuhan Taman Laut Malaysia (Pindaan) 2012.pdf

Tide Table and Solunar Charts for Fishing, 2014
