IMPACTS OF ROAD NETWORK CONNECTIVITY ON QUALITY OF IN
ABUJA CITY

NUHU HONNEY TINI

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Transportation Planning)

Faculty of Built Environment and Surveying
Universiti Teknologi Malaysia

NOVEMBER 2018
DEDICATION

This thesis is dedicated to God Almighty. To whom be all the power, majesty, glory, honour and adoration.
ACKNOWLEDGEMENT

To God Almighty be the glory; who marvellously helped me and made this work a success.

Words cannot sufficiently express my appreciation for the persistent guidance and care of my Supervisor, Assoc. Prof. Dr. Muhammad Zaly Shah, all through this research work. The support and contribution in all facets from Dr. Zahid Sultan and Dr. Mehdi Moeinadinni is also exceedingly acknowledged.

My enormous thanks goes to Nigerian Government for TETFUND sponsorship, and to Adamawa State University, Mubi for study leave.

I appreciate the support of my colleagues who in spite of tight research schedule sacrificed their precious time to train me in software applications. I specifically express my indebtedness to Dr. Hassan Adulaziz, Surveyor Anthony Tumba, Dr. Iraj Karimi, and Dr. Solomon Oluyinka.

The affections, prayers, and patience of my wife, Rita and children, Jehu, Jemimah, Jabin and Julia will keep on lingering in my heart for ever. Thanks for understanding and forbearing the many nights I was away.

I thank the Deeper Life Group, UTM, for their kindness to me throughout this study. I passionately acknowledge their support, prayer and courage which was constantly at my disposal during this endeavour. To friends and well-wishers: I am restricted by space and time from listing out all of you. Admit my deep gratitude collectively.
Development of well-connected road network to guarantee quality living in cities is a major concern in the current era. Efforts have been made to establish the underlying relation between road network and societal well-being. However, the causal relationship remains poorly understood due to inability to consider personal quality of life in the appraisal technique. This research introduces a novel model with multidimensional analytical approach for empirical exploration of road connectivity impact on quality of life (QOL) in Abuja City, Nigeria. Forty planning districts were used as spatial units for road network analysis. QOL survey data were generated from 367 respondents in the 15 sampled districts. Graph theory metrics comprising alpha, beta, cyclomatic number, eta, gamma and aggregate transportation score (ATS) indices were applied to determine the connectivity of road networks. Exploratory factor analysis (EFA) was used to examine the components of road connectivity and quality of life indicators for the model development. Structural equation modelling (SEM) was applied for confirmatory factor analysis (CFA) to determine the model fitness between the components of road connectivity and the latent indicators of quality of life. Weighted average score (WAS) and analysis of variance (ANOVA) were used to compare the quality of life among the districts with different levels of road connectivity. Finding revealed that most districts (60%) have low road connectivity (6.66 – 46.23 ATS). About 22.5% of the districts have moderate connectivity (51.04 – 91.00 ATS), while 17.5% districts have high road connectivity (100.98 – 146.13 ATS). Factor analysis affirmed that four connectivity components, six latent factors and 26 observable factors were fit for model development. The structural equation modelling showed high factor loading (R² = 0.66), implying that road connectivity components explained 66% of QOL. Path coefficient was 0.81, indicating that every one unit increase in connectivity, contributes 0.81 unit increase in QOL. Analysis of variance showed a statistical significant difference in quality of life at < .05 level between low and high connected districts. However, quality of life slightly varied between the moderate and low connected districts as well as between the moderate and high connected districts. Overall, the results of this research have contributed by revealing how road connectivity empirically affects QOL. Hence, the study suggests a multidimensional model that can be employed in future analyses. The model would be useful to researchers, planners and engineers for examining the impact of transportation network on societal quality of life.
ABSTRAK

Pembangunan rangkaian jalan yang bersambung dengan baik untuk memastikan kualiti hidup di bandar merupakan kebimbangan utama dalam era masakini. Usaha telah dibuat untuk mewujudkan hubungan asas antara rangkaian jalan dan kesejahteraan masyarakat. Walau bagaimanapun, hubungan kasual masih kurang difahami kerana ketidakupayaan untuk mengambilkira aspek kualiti hidup peribadi dalam teknik penilaian. Kajian ini memperkenalkan model baru dengan pendekatan analitik multidimensi untuk meneroka secara empirikal impak kesinambungan rangkaian jalan raya terhadap kualiti hidup (QOL) di Abuja City, Nigeria. Empat puluh daerah perancangan digunakan sebagai unit spatial untuk analisis rangkaian jalan raya. Data tinajuan QOL dihasilkan daripada 367 responden di 15 sampel daerah. Metrik Teori Graf yang terdiri daripada indeks alpha, beta, nombor cyclomatik, eta, gamma dan indeks skor agregat (ATS) digunakan untuk menentukan tahap kesinambungan rangkaian jalan. Analisis Faktor Eksplorasi (EFA) digunakan untuk mengkaji komponen kesinambungan jalan raya dan indikator kualiti hidup bagi pembangunan model. Model Persamaan Struktur (SEM) telah digunakan untuk Analisis Faktor Pengesahan (CFA) bagi menentukan kesesuaian model antara komponen kesinambungan jalan dan penunjuk kualiti hidup terpandam. Nilai purata berwajaran (WAS) dan analisis varians (ANOVA) digunakan untuk membandingkan kualiti hidup di antara daerah dengan tahap kesinambungan jalan yang berbeza. Dapat menunjukkan bahawa kebanyakan daerah (60%) mempunyai tahap kesinambungan jalan yang rendah (6.66 – 46.23 ATS). Lebih kurang 22.5% daripada daerah mempunyai kesalinghubungan sederhana (51.04 - 91.00 ATS), sementara 17.5% mempunyai sambungan jalan raya yang tinggi (100.98 - 146.13 ATS). Analisis faktor mengesahkan empat komponen kesinambungan, enam faktor terpendam dan 26 faktor pemerhatian adalah sesuai untuk pembangunan model. Model persamaan struktur menunjukkan pemuatan faktor yang tinggi (R² = 0.66) yang mencadangkan bahawa komponen kesinambungan jalan raya menerangkan 66% QOL. Pekali laluan ialah 0.81 menunjukkan bahawa setiap satu unit peningkatan kesinambungan menghasilkan 0.81-unit peningkatan QOL. Analisis varians menunjukkan perbezaan statistik yang signifikan dalam kualiti hidup pada tahap < .05 antara daerah berkesinambungan tinggi dan rendah. Walau bagaimanapun kualiti hidup berbeza sedikit antara kesinambungan sederhana dan rendah serta antara daerah kesinambungan sederhana dan tinggi. Secara keseluruhannya, kajian ini menyumbang kepada pendedahan bagaimana kesinambungan jalan secara empirikal mempengaruhi kualiti hidup. Oleh itu, kajian ini menunjukkan bahawa model multidimensi boleh digunakan untuk analisis prestasi pengangkutan. Model ini berguna untuk penyelidik, perancang dan jurutera untuk mengkaji kesan rangkaian pengangkutan terhadap kualiti hidup masyarakat.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 Research Background 1
1.2 Research Problem Statement 4
1.3 Research Aim 6
1.4 Research Objectives 6
1.5 Research Questions 6
1.6 Scope of the Study 7
1.7 Research Limitations 8
1.8 Significance of the Research 8
1.9 Structure of Thesis 9

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13
2.2 Transport Network and Societal Well-being Models
2.2.1 Socio-Economic Welfare Growth Model 13
2.2.2 Transport Investment Model 14
3.2.2 Topography 81
3.3 Population 81
3.4 Historical Background 82
3.5 Urban Form of Abuja City 82
3.6 Land Use Pattern 84
 3.6.1 Residential Areas 85
 3.6.1.1 Asokoro District 85
 3.6.1.2 The City Centre 86
 3.6.1.3 Garki District 88
 3.6.1.4 Guzape District 88
 3.6.1.5 Maitama District 89
 3.6.1.6 Wuse District 90
 3.6.1.7 Utako District 91
 3.6.1.8 Jabi District 91
 3.6.1.9 Gwarimpa District 92
 3.6.1.10 Lokogoma District 93
 3.6.1.11 Kafe District 94
 3.6.2 Commercial Areas 94
 3.6.3 Industrial Areas 97
 3.6.4 Recreational Areas 97
3.7 Urban Development and Transport Policy in Abuja City 101
 3.7.1 Accessibility 102
 3.7.2 Transport System Integration 102
 3.7.3 Traffic Management 102
 3.7.4 Non-Motorized Transportation 103
 3.7.5 Environmental Protection 103
3.8 Transportation Network 103
 3.8.1 Air Transport 104
 3.8.2 Rail Transport Network 104
 3.8.3 Road Transportation System 105
 3.8.3.1 Road Network Spatial Structure 106
3.8.3.2 Urban Road Transportation 109
3.9 Chapter Summary 112

CHAPTER 4 RESEARCH METHODOLOGY 113
4.1 Introduction 113
4.2 Research Strategy 113
4.3 Method of Study 114
4.3.1 Types and Sources of Data 115
4.3.1.1 Types of Data 116
4.3.1.2 Sources of Data 116
4.3.2 Analytical Tools and Software 118
4.4 Population and Sampling Strategy 119
4.4.1 Sampling Unit 120
4.4.2 Population Sample Size 122
4.4.3 Population Sampling Procedure 124
4.5 Data Analytical Techniques 127
4.5.1 Road Network Spatial Analysis 127
4.5.1.1 Representation of Road Network Configuration 127
4.5.1.2 Analysis of Road Network Structural Topology 128
4.5.2 Questionnaire Survey 130
4.5.2.1 Questionnaire Development 130
4.5.2.2 Questionnaire Scaling Technique 131
4.5.2.3 Pilot Survey 132
4.5.2.4 Questionnaire Administration 132
4.6 Questionnaire Analysis 133
4.7 Data Examination 134
4.7.1 Missing Data 135
4.7.2 Test of Normality 135
4.7.3 Outliers 136
4.7.4 Reliability Test 136
CHAPTER 5 DATA ANALYSIS AND DISCUSSION 149

5.1 Introduction 149

5.2 Demographic Profile of Respondents 150

5.2.1 Gender 150

5.2.2 Age Distribution 151

5.2.3 Educational Attainment 151

5.2.4 Employment Status 152

5.2.5 Monthly Income 153

5.2.6 Duration of Residence 154

5.2.7 Travel Mode 155

5.2.8 Vehicle Ownership 156

5.2.9 Daily Distance Travel 157

5.2.10 Daily Travel Expenses 158

5.3 Research Question 1: What is the spatial pattern of road network connectivity in Abuja city? 159

5.3.1 Road Network Spatial and Attribute Data 160

5.3.1.1 Curvilinear Grid Network Pattern 161

5.3.1.2 Irregular Grid Network Pattern 162
5.3.1.3 Rectilinear Grid Network Pattern 163
5.3.1.4 Hybrid Grid Network Pattern 164
5.3.1.5 Broken Gridiron Network Pattern 165

5.3.2 Road Network Connectivity 171
5.3.2.1 Proportion of Edges per Vertex 171
5.3.2.2 Network Circuitry 172
5.3.2.3 Network Cyclomatic Number 173
5.3.2.4 Proportion of Routes 175
5.3.2.5 Network Routes Length 176
5.3.2.6 Aggregate Transportation Score (ATS) 178

5.4 Research Question 2: What are the Components of Road Connectivity and Quality of Life Indicators? 181
5.4.1 Preliminary Analysis of Road Connectivity Components and Quality of Life Indicators 182
5.4.1.1 Reliability Test 183
5.4.1.2 Sample Suitability 185
5.4.2 Exploratory Factor Analysis 185

5.5 Research Question 3: To what extent does road network connectivity components influence quality of life in Abuja city? 189
5.5.1 Estimate of Measurement Model of QOL Variables 189
5.5.2 Pooled Confirmatory Factor Analysis (PCFA) of Quality of Life Perception 192
5.5.3 Model Modification 193
5.5.4 Model Fit Enhancement 195
5.5.5 Second Order Structural Model CFA for Quality of Life Perception 201
5.5.6 Structural CFA Model for Road Connectivity Components and Quality of Life Perception 205

5.6 Research Question 4: Is there any similarity in quality of life between districts with different levels of road network connectivity? 210
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 219

6.1 Introduction 219
6.2 Research Summary 219
 6.2.1 Research Question 1: What is the spatial pattern of road network connectivity in Abuja city? 220
 6.2.2 Research Question 2: What are the components of road connectivity and quality of life indicators? 220
 6.2.3 Research Question 3: To what extent does the components of road connectivity influence quality of life? 221
 6.2.4 Is there any similarity in quality of life between districts with different levels of road connectivity? 221
6.3 Summary of Findings 222
6.4 Theoretical and Policy Implications 223
6.5 Practical Implications 225
6.6 Contribution of Road Connectivity Quality of Life Model 226
6.7 Limitations and Suggestions for Further Research 228
6.8 Recommendations 229

REFERENCES 231
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Research Gaps on Road Network Connectivity and Quality of Life</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Road Connectivity Quality of Life Indicators</td>
<td>69</td>
</tr>
<tr>
<td>3.1</td>
<td>Trip Distance to District Locations in Abuja City</td>
<td>108</td>
</tr>
<tr>
<td>3.2</td>
<td>Road Transport Modal Split in Abuja City</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>Daily traffic Volume and VKT on Major Roads in Abuja City</td>
<td>110</td>
</tr>
<tr>
<td>4.1</td>
<td>Study Population per Sampled District</td>
<td>126</td>
</tr>
<tr>
<td>4.2</td>
<td>Road Network Connectivity Measures</td>
<td>129</td>
</tr>
<tr>
<td>4.3</td>
<td>Questionnaire Analysis Procedure</td>
<td>134</td>
</tr>
<tr>
<td>4.4</td>
<td>Types of Model Fit and Acceptance Level</td>
<td>143</td>
</tr>
<tr>
<td>5.1</td>
<td>Types of Road Network Pattern in Abuja City</td>
<td>161</td>
</tr>
<tr>
<td>5.2</td>
<td>District-wise Road Network Attribute Data</td>
<td>168</td>
</tr>
<tr>
<td>5.3</td>
<td>Computed Value of Road Connectivity Indices</td>
<td>169</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of Beta Index</td>
<td>172</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of Alpha Index</td>
<td>173</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary of Cyclomatic Number</td>
<td>174</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary of Gamma Index</td>
<td>175</td>
</tr>
<tr>
<td>5.8</td>
<td>Summary of Eta Index</td>
<td>177</td>
</tr>
<tr>
<td>5.9</td>
<td>Summary of Aggregate Transportation Score</td>
<td>179</td>
</tr>
<tr>
<td>5.10</td>
<td>Test of Reliability</td>
<td>184</td>
</tr>
</tbody>
</table>
5.11 KMO and Bartlett's Test 185
5.12 Exploratory Factor Analysis 187
5.13 Summary Connectivity Components & QOL Indicators 188
5.14 Modification Indices of Correlated Pair of Items 193
5.15 Statistics of Enhanced Model CFA for Quality of Life Perception 198
5.16 Discriminant Validity of Quality of Life Perception 200
5.17 Statistics of Second Order CFA for Quality of Life Perception 203
5.18 Statistics of CFA Model for Road Connectivity and QOL Perception 207
5.19 Discriminant Validity of Road Connectivity and Quality of Life Perception 209
5.20 District-wise Quality of Life Perception (Weighted Average Score) 207
5.21 Variable Descriptive Statistics 213
5.22 Result of Analysis of Variance (ANOVA) 214
5.23 Result of Post Hoc Tests 214
6.1 Summary of Findings 223
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Design</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Road Connectivity Quality of Life Conceptual Framework</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of Studies, Gap and Analysis Domains</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Morphological Urban Forms</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Fundamental Transportation Network</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Road Network Nodes and Links (Nykamp, 2017)</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Stages of Road Network Development</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Scale-Free Road Network (Fonseca et al., 2007)</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Ribbon Housing Development (Istock, 2017)</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>Spatial Patten of Road Connectivity (Aaustin, 2015)</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of Abuja FCT in Nigeria</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of Abuja City in the FCT</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Demarcation of the 40 Districts within Abuja Municipality</td>
<td>80</td>
</tr>
<tr>
<td>3.4</td>
<td>Urban Form of Abuja City. Source: https://imgcop.com</td>
<td>84</td>
</tr>
<tr>
<td>3.5</td>
<td>Land Use Map of Abuja Municipality</td>
<td>85</td>
</tr>
<tr>
<td>3.6</td>
<td>Housing Layout in Asokoro District with Walkway Street</td>
<td>86</td>
</tr>
<tr>
<td>3.7</td>
<td>National Christian Church Abuja. Source</td>
<td>87</td>
</tr>
<tr>
<td>3.8</td>
<td>National Mosque Abuja</td>
<td>87</td>
</tr>
<tr>
<td>3.9</td>
<td>Central Bank of Nigeria Sited in Garki District, Abuja</td>
<td>88</td>
</tr>
<tr>
<td>3.10</td>
<td>AICL Mall Guzape, Abuja</td>
<td>89</td>
</tr>
</tbody>
</table>
3.11 Maitama Residential District with Street Parkway

3.12 Wuse Residential Zone Sky View

3.13 Jabi Lake Estate

3.14 Classic House in Gwarimpa District, Abuja

3.15 Wuse Central market, Abuja

3.16 Garki International Mark, Abuja

3.17 Millenium Park Maitama, Abuja

3.18 Villa Park and Garden, Abuja

3.19 Art and Craft Village, Abuja

3.20 Nigerian Traditional Mask and Necklace

3.21 Abuja Metro Light Rail

3.22 Abuja City Road Network Sky View

3.23 Road Network Pattern in Abuja City

4.1 Flowchart of Data Collection and Analysis Procedure

4.2 Base Maps Used Extraction of Road Network

4.3 Case Study Districts for Questionnaire Administration

5.1 Data Analysis Flowchart

5.2 Respondents' Gender

5.3 Respondents' Age Distribution

5.4 Respondents' Educational Attainment

5.5 Respondent's Employment Status

5.6 Respondents' Monthly Income

5.7 Respondents' Duration of Residence in District
5.8 Respondents' Travel Mode
5.9 Respondents' Vehicle Ownership
5.10 Daily Distance Travelled by Respondents
5.11 Respondents' Daily Travel Expenses
5.12 Road Network Structure in Abuja City
5.13 Curvilinear Grid Pattern in Bonkoro District
5.14 Irregular Grid Pattern in Maitama District
5.15 Rectilinear Grid Pattern in Institution and Research Area
5.16 Hybrid Grid Pattern in Industrial Area 2
5.17 Broken Gridiron Pattern in Central Business District
5.18 Distribution of Road Network Pattern in Abuja City
5.19 Spatial Distribution of Road Connectivity in Abuja City
5.20 Normal Distribution of Response Cases
5.21 Estimate of QOL Pooled CFA Measurement Model
5.22 Initial Result of QOL Pooled Confirmatory Factor Analysis
5.23 Re-Specified QOL Model Fit Indexes after Correlating Items
5.24 Final Enhanced QOL Model CFA Fit Indices
5.25 Second Order Structural Model CFA of Quality of Life
5.26 Structural CFA Model for Road Connectivity Components and Quality of Life Perception
6.1 Road Connectivity Quality of Life Model
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEA</td>
<td>Association des Constructeurs Europeen</td>
</tr>
<tr>
<td>AEPB</td>
<td>Abuja Environmental Protection Board</td>
</tr>
<tr>
<td>AGIS</td>
<td>Abuja Geographic Information Studies</td>
</tr>
<tr>
<td>AMOS</td>
<td>Analysis of Moments Structure</td>
</tr>
<tr>
<td>ArcGIS</td>
<td>Aeronautical Reconnaissance Coverage Geographic Information System</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>CFI</td>
<td>Comparative Fit Index</td>
</tr>
<tr>
<td>CMIN</td>
<td>Chi Square</td>
</tr>
<tr>
<td>EFA</td>
<td>Exploratory Factor Analysis</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUR</td>
<td>Euro</td>
</tr>
<tr>
<td>FCDA</td>
<td>Federal Capital Development Authority</td>
</tr>
<tr>
<td>FCT</td>
<td>Federal Capital Territory</td>
</tr>
<tr>
<td>FHA</td>
<td>Federal Housing Authority</td>
</tr>
<tr>
<td>FRF</td>
<td>French Franc</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GOT</td>
<td>Goodness of Fit</td>
</tr>
<tr>
<td>GT</td>
<td>Guarantee Trust Bank</td>
</tr>
<tr>
<td>KM</td>
<td>Kilo Meter</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser Meyer Olkin</td>
</tr>
<tr>
<td>ND</td>
<td>Network Density</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>NFI</td>
<td>Normed Fit Index</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NOX</td>
<td>Nitrogen Oxide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Term</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PDR</td>
<td>People’s Democratic Republic</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of Life</td>
</tr>
<tr>
<td>R²</td>
<td>Squared Multiple Correlation</td>
</tr>
<tr>
<td>RMSEA</td>
<td>Root Mean Square of Approximation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modelling</td>
</tr>
<tr>
<td>SINTEF</td>
<td>The Foundation for Industrial and Scientific Research</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>TDM</td>
<td>Transportation Demand Management</td>
</tr>
<tr>
<td>TLI</td>
<td>Tusker-Lewis Index</td>
</tr>
<tr>
<td>TOD</td>
<td>Transit-oriented Development</td>
</tr>
<tr>
<td>UBA</td>
<td>United Bank of Africa</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VEPI</td>
<td>Voter Education and Publicity Inec</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle Miles Travelled</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha Index</td>
</tr>
<tr>
<td>β</td>
<td>Beta Index</td>
</tr>
<tr>
<td>η</td>
<td>Eta Index</td>
</tr>
<tr>
<td>∞</td>
<td>Infinity</td>
</tr>
<tr>
<td>μ</td>
<td>Cyclomatic Number</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma Index</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>List of Publications</td>
<td>271</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Research Questionnaire</td>
<td>272</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Normality Test</td>
<td>279</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Quality of Life Weighted Average Score</td>
<td>280</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Summary of Literature on Road Network Connectivity and Quality of Life</td>
<td>283</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Transportation is a process that satisfies human mobility demand by providing access to diverse activities in the society. The social and economic activities of human kind centre on transportation (Harriet et al., 2013 and Coffin, 2009). This is a means by which people physically access social capital, either in form of associations and community groups or simply to maintain linkages with extended family members. Activities such as social, cultural or economic interaction involve diverse functions comprising ‘production, consumption and distribution’ occur at locations served by various modes of transportation (Rodrigue et al., 2013).

Road as a mode of transportation serves as a conduit linking places, regions, and economy together; facilitating movement of people, goods and services (Venter et al., 2016, and Niazi, 2017). Road plays a central role in economic development and enhancement of social transaction. Thus contributes to productivity in other economic sectors, foster prosperity and support the foundation upon which economic strength of a place, region or nation rest (Patarasuk and Binford, 2012, and Papoutsis, 2013). This in turn has tremendous influence on societal well-being.

Network is a group of path nodes joined together by sets of linkages (Newman, 2010). It is also known as a framework of functional relations shaping the pattern of a territory (Borruso, 2003). Hence road network has a fundamental structure defined by layout, arrangement and connectivity of individual network elements and their intersections (Parthasarathi, 2011).

Road network connectivity can be considered as the systematic linkage of points, lines, and areas in relation to degree of properties such as size, distance, travel
time and optimal path’ (Jayasinghe and Munasinghe, 2013). Connectivity in order words refers to linking many places so as to create interconnections which yields web-like network (Levinson, 2012). Bashir et al. (2012) aver that connectivity expresses the degree to which network permits direct movement between its various vertices or nodes. Thus road connectivity is critical for the success of other urban sectors. The advantages of road network connectivity are far ahead of accessibility and mobility in the city. But encompasses safer roads, reduced traffic congestion, and cost saving (Lehigh-Valley-Planning-Commission, 2011).

Road network connectivity influence pattern of urban growth and location of socio-economic activities, environmental aesthetics, employment and residential areas in the city. It as well affects commuters’ choice of destination and accessibility (Huang and Levinson, 2012, Waddell, 2011, and Bogale, 2012). Also, Rodrigue et al. (2013) posits that connectivity does not only favour economic development but also determine the spatial organization in terms of locations, relations and accessibility. In a city setting where roads are the predominant means of mobility; land-use and roads are intertwined. Consequently, road networks are solely relied upon to access different activities such as businesses, educational institutions, employment opportunities, cultural and recreational centres. Shahi (2014) rightly observes that ‘road network is the basic foundation of other development initiatives which ensures overall social, cultural and economic empowerment of communities’.

It could be inferred from the foregoing statements that a well-connected road network is an indispensable prerequisite for attainment of quality living condition. Deluka-Tibljaš et al. (2013) affirm that quality of life in cities greatly rely on the nature of transport services and as well on traffic infrastructure which, alongside with efficient transport system, make urban areas more accessible, and in turn raises their value. Road network therefore needs to be accessible and link up most places so as to create a promotional impact of land use activity and socio-economic well-being of people within the city-region. As Handy et al. (2010) proclaim that adequate road connectivity ensures social equity by providing travel options, accessibility and reduce travel cost to those who lack means of transportation in the city.
Road transport network is paramount to advancement of social and economic development in urban areas. In due course, investigations are directed towards understanding the link between transportation and economy, environment, social relationships and the people, and in turn their causal effect on societal well-being. Nevertheless, the social impact of transportation network has not been sufficiently explored particularly in developing country cities (Tiwari and Arora, 2012). It is equally acknowledged that the influence of transport network on urban lifestyle is scarcely investigated (Mohamed et al., 2013).

Existing investigations on road transport network impact on societal living quality mostly dwell on objective attributes while subjective quality of life is scarcely examined. For instance, preceding studies (Oluseyi, 2006, Özbil et al., 2008, Rifaat et al., 2012, Bornasal, 2012, Schneider, 2013, Parida, 2014) tried to describe the link between road network and societal well-being. However, their analysis and emphasis concentrate on selective individual indicators of objective (external attributes like air quality, noise, local economy, crime, traffic crash, social interactions) of well-being. Such individual objective variables neither indicate thorough and adequate measures nor provide sufficient information on societal quality of life.

The statistical framework employed is another major defect in analytical process. Most of the preceding studies presented only descriptive statistics or used simple bivariate tests of correlation, while some proposed theoretic models without empirical assessment. Thus results of such investigation cannot adequately relate the causal effect of road network on living quality. This makes judgements difficult, which result to indefinite and disputed conclusions about the causality between transport network and societal well-being (Reardon and Abdallah, 2013).

Thus far, no substantive predictive model has been developed for determining transport network connectivity impact on urban quality of life (Schneider, 2013). There is also no any previous study that has excursively investigated the impact of road connectivity on quality of life by examining multidimensional variables of well-being using self-reported (internal judgement) approach (Estlander, 2015; Lee and Sener, 2016).
Such limited capture of quality of life attributes in analysis, inadequate statistical approach, and undefined predictive model pose some difficulties to professionals and the society at large. Specifically, it constrains transport planners and engineers from gaining adequate insight to how their activities (policy and plan) influence the lifestyle of urban dwellers. It as well restricts policy-makers from comprehending the success of road investment in achieving the desired transport demand. It also makes the performance of urban road network in ensuring cultural, economic, social and overall urban development to remain unclearly defined.

The desire for more empirical approaches required in order to facilitate better insight to the rapport between societal well-being and transportation network stimulated interest in this present research. The motive is to introduce a firm and multi-dimensional (multiple interactive factor) model for empirical evaluation of road connectivity causal impact on quality of life. The model would help planners, engineers and decision-makers to better understand how road transportation system affect the well-being of urban dwellers. Thus the outcome of this research could facilitate future road planning, design, decision and implementation, without which sustainable transportation system and overall growth cannot be achieved in the city.

1.2 Research Problem Statement

The spatial growth of urban centres is an emerging phenomenon in developing countries. Cities are experiencing spectacular expansion which tremendously attracts the attention of urban planners (Tini and Peter, 2013). In this vein, Abuja city has experienced enormous attention and intensive resource infusion towards road infrastructure and transport facilities since its inception as federal capital of Nigeria in 1991. This resulted to significant changes in road network pattern. However, some disparities in connectivity across the city regions generate inequity in inhabitants’ quality of life. Such phenomenon prompted the pertinence and desire for this investigation.
Generally, improvement of living quality has become a spectacular issue in cities. Thus, because it is one of the most essential dimensions for sustaining urban development (El-Din, et al., 2013). In realizing this objective, Jiménez-Espada and Gonzalez-Escobar (2016) have established that optimization of road transport network is one of the main ways to attain urban quality of life. Unfortunately, the causal impact of transportation system on societal well-being is not yet well established (Schneider, 2013 and Venables, 2014). Such predicament is prompted by limited capture of quality of life attributes in analysis, inadequate statistical analytical approach, and undefined predictive model for assessment (Carse, 2010, and Schneider, 2013).

These challenges and the rising need for better approach arouse interest in the present research to develop a more suitable and reliable technique for assessment of road network connectivity causal impact on societal quality of life in the context of Abuja city. The intention is to introduce a model with multidimensional analytical approach and diverse variables of transport related quality of life. Such involves modelling spatial connectivity of road network, ascertaining the components of road connectivity and quality of life indicators, and determining the implication of road connectivity on societal quality of life. Then lastly compare the quality of life between the districts with different road connectivity levels.

Four components, including route options, network reliability, transport efficiency and traffic flow have been identified from literature as the most relevant and essential social constituents of road network performance. Hence, they were adopted as connectivity social predictors of personal quality of life. Similarly, it is established from literature that personal accessibility, personal mobility, economic well-being, emotional travel safety, travel comfort and social interaction have scarcely been combined together as main constructs of transport related quality of life indicators and thus considered as endogenous factors in this analysis. Such constituents are vital for attainment of the intended goal in this empirical investigation as well as in developing a multidimensional model for assessing road connectivity causal impact on quality of life.
1.3 Research Aim

The main aim of this research is to extend the understanding of road network effect on societal quality living using multidimensional quantitative analytical approach. This will be achieved by investigating road network connectivity, and by determining the theoretical effect of connectivity components on quality of life via structural equation modelling. Such a dynamic approach can facilitate future planning and designing of roads, which in turn could offer sustainable transportation system, better quality of life and overall growth in the city.

1.4 Research Objectives

The specific objectives to be achieved in this study are to:

(a) Analyze the spatial pattern of road network connectivity in Abuja city.
(b) Examine the connectivity components and quality of life indicators suitable for assessing impact of road network,
(c) Determine the influence of road connectivity components on quality of life,
(d) Compare quality of life between the districts with different levels of road network connectivity.

1.5 Research Questions

The following are questions to enable the research achieve its objectives:

(a) What is the spatial pattern of road network connectivity in Abuja city?
(b) What are the connectivity components and quality of life indicators suitable for assessing impact of road network?
(c) To what extent do road connectivity components influence quality of life?
(d) Is there any similarity in quality of life between the districts with different levels of road connectivity?

1.6 Scope of the Study

This research is mainly a cross sectional analysis of road connectivity influence on quality of life in Abuja municipality. The aspects looked into were spatial structure of road connectivity, components of road connectivity and quality of life indicators. Forty planning districts were designated as unit of road network analysis. The structural analysis is confined to road network connection pattern in the study area. Alpha index, beta index, gamma index, cyclomatic number, eta index, and aggregate transportation score were used to determine the road connection pattern. The analysis did not involve complex network analysis such as betweenness, heterogeneity, and homogeneity. All categories of road comprising expressway, arterial, sub-arterial, secondary and local roads within the metropolitan area were unanimously represented as primal graph for analysis.

Social implication of road network in this research is restricted to the performance of road connectivity components and quality of life indicators. Four social components of road network connectivity were examined. These comprised route options, traffic flow, network reliability and transport efficiency. Six transport-related quality of life indicators were surveyed. These encompassed personal accessibility, personal mobility, economic well-being, travel comfort, travel safety, social interaction. The selection of few social components and quality of life indicators is for convenience, easy variable management, interpretation and result implementation.

Fifteen out of the forty districts were sampled as case study area to obtain survey data on quality of life and road connectivity performance. The data were collected from road users residing within Abuja metropolis, including males and females who were at the age of twenty years and above. The survey was conducted from the month of April to August 2016.
1.7 Research Limitations

This research will delineate connectivity of road network so as to know the pattern and properties of roads within Abuja municipality. Thereby provides adequate information to planners, engineers, administrators and the general public on the physical configuration and efficiency of road network in the city. This is vital for future decision on planning and development of roads. This investigation does not involve complex network analysis such as betweenness, heterogeneity, and homogeneity.

The study also ascertains the performance of road connectivity components and as well determines road users’ life satisfaction with the road connectivity. This outcome will reveal to planners and engineers the impact of their activities on the lifestyle of city dwellers. The finding will also enable administrators to ascertain the ability of road investment in achieving the desired goal of improving standard of living of the urbanites.

Furthermore, the study shall verify and compare quality of life between the districts with different levels of road connectivity. Such understanding is essential for planning decision which could ensure cultural, economic, social equity and environmental sustainability at regional and the entire city levels.

1.8 Significance of the Research

The rational for this study was to develop a multidimensional analytical model which shall serve as a guide for transport planners and policy makers in assessing the impact of road connectivity on societal living quality. Thus the important and beneficial achievements of the research include the following:

This study will uncover the physical configuration of road network in Abuja city. Hence the outcome is beneficial since it will serve as a guide to planning authority in deciding for future need, plan and development of roads in the city. The research will analyse levels of road connectivity; therefore, the result will be helpful for the
inhabitants in choosing favourable location to reside either in the low, the moderate or the highly road connected districts.

Result of this research shall aid planning authority in detecting and finding solution to the problems associated with physical road network in Abuja city.

Findings of this study will also assist planning authority and administrators to know the performance of road connectivity in promoting societal liveability and quality of life.

In view of the rising requirement for approaches to assess transport impact on societal well-being. The active model introduced in this research will be useful for transport planners and researchers as a significant and flexible technique for evaluating the influence of road network on societal living quality. The study shall as well serve a future reference for researchers on urban transportation and human society.

Finally, the outcome of this work will provide planners and policy-makers with adequate information on the factors to be noted in designing an integral approach for planning quality and aesthetic urban environment with sustainable road network that would enhance cultural, social and economic well-being of the urbanites.

1.9 Structure of Thesis

This research is organized in six sections systematically outlined as follows: Chapter 1 captures background of the study, research problem, research questions, aim and objectives, scope and limitation of the study, and research significance. Generally, it describes the concept and content of this research work.

Chapter 2 comprises detail literature review on transport network and societal well-being models, evolution of road network, trends of urban road network, concept of road network connectivity, its measures and societal impact. It also highlights
quality of life concept, its relationship with transportation network, quality of life indicators, and the related existing studies.

Chapter 3 describes the physical and social characteristics of the study area. Additionally, it gives hint about urban form and land use pattern of the city. The existing transportation policy and transport network of Abuja city are other issues captured in this section.

Chapter 4 presents the materials and methods used in achieving objectives of the study. It explains the types of data collected, data acquisition and processing methods. It further covers road network analysis, population sampling strategy, questionnaire administration, statistical test and structural equation modelling procedures.

Chapter 5 consists of the data analysis and results discussion. The collected data were analysed and interpreted based on the research objectives as follows: analysis of spatial pattern of road network connectivity, components of road connectivity and quality of life indicators, impact of road connectivity on quality of life, and comparison of quality of life between different road connectivity districts.

Chapter 6 concludes the entire research work. This constitutes the overall summary of the thesis, discussion of findings based on the research questions, conclusion and suggested future research areas in the field of study are highlighted. Graphical description of the thesis details is presented in research design (Figure 1.1).
Figure 1.1: Research Design
REFERENCES

Armitage, R. (2011). The Impact of Connectivity and Through-Movement within
Residential Developments on Levels of Crime and Anti-social Behaviour.
University of Huddersfield, Huddersfield. (Unpublished)
http://eprints.hud.ac.uk/id/eprint/13592/1/Briefing.

Forkenbrock, D. J. (2004). Transportation Policy Strategies for Iowa to Advance the Quality of Life.

Ghorveh, G. M. (2017). Does Street Quality Affect Transit Users' Route Choice?

Lokesha & Mahesha (2016). Impact of Road Infrastructure on Agricultural Development and Rural Road Infrastructure Development Programmes in India. *International Journal of Humanities and Social Science Invention ISSN (Online): 2319 – 7722, ISSN (Print): 2319 – 7714.*

McMahon, S. (2002). The Development of Quality of Life Indicators—a Case Study from the City of Bristol, UK. *Ecological Indicators, 2*, 177-185.

