COST BREAKDOWN STRUCTURE FOR LIFE CYCLE COST OF WATER PUMP

NURUL WAHIDA BINTI ROSLI

UNIVERSITI TEKNOLOGI MALAYSIA
COST BREAKDOWN STRUCTURE FOR LIFE CYCLE COST OF WATER PUMP

NURUL WAHIDA BINTI ROSLI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Facilities Management)

Faculty of Environment and Surveying
Universiti Teknologi Malaysia

AUGUST 2018
Specially dedicated to my parents, family, husband and children and I love all of you. And to my late mother, this is for you. My journey of PhD begins with you. Thanks to all for being supportive.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. Praises are only to Allah, the Lord of the universe.

Firstly, I want to dedicate my appreciation to my thesis supervisor, Professor Sr. Dr. Abdul Hakim Mohammed and my co-supervisor, Dr. Mohd Shahril Bin Abdul Rahman for their support, critics, supervision, and tolerance along my journey of my PhD study. Thanks to: All PhD colleagues, Ooi Chu Hui, Ezdihar, Nik Iezuan, Shubashini, Gunavathy, and many more friends that I might disremember mentioned their names here. Big thanks to all the academic and non-academic staffs of the faculty especially from the Property Management Department.

Also my appreciation to the Pengurusan Aset Air Berhad (PAAB) Malaysia especially to Encik Mohd Hazley Halim who that had given me a chance to be in their asset management team along my data collection. Also to Puan Rohizan Mohamed who also helped me during the survey distribution among the PAAB staff. Not to mentioned, the entire person who directly and indirectly involved in my PhD journey.

I also would like to express my appreciation to Universiti Teknologi Malaysia that provides the financial support in the form of Zamalah scholarships.

Special thanks to my parents, my father Rosli Jilani and especially for my late mother, Allahyarhamah Hajah Hamiyati Bakri who never gives up encouraging me to further study up to PhD level. She is the big inspiration that makes me who I am today. Alfatihah. And, thanks to my beloved husband, Noor Hamizi Salman; who believed that I could complete this research in time and always attempts to ensure my necessity is sufficient along my study. Finally, to my children, Wafra and Haqq may both of you also be able to complete your study up to the PhD level as well as I did.
ABSTRACT

Life Cycle Costing (LCC) is an essential concept that is useful in reducing cost along a lifespan of an asset or equipment. LCC concepts have been introduced to water distribution system management; which is aimed to attain the lowest network provision and operating cost. However, there is slow adoption of LCC due to the lack of framework or mechanism to collect and store the data in a systematic way. Thus, a guideline is needed in order to widely encourage the application of LCC in the water industry especially in pump purchasing decision making. However, a Cost Breakdown Structure (CBS) is a pre-requisite before performing the LCC. Thus, the objective of this study are to identify the cost element needed for estimating the LCC for treated water pump in Malaysia; the next objective is to determine the weightage of most budget spent and important phase in life cycle stages for treated water pump and to develop a CBS for treated water pump in Malaysia. In the first stage, cost elements were collected based on literature review. Next, a questionnaire survey was conducted and the data were analyzed using Analytical Hierarchy Process (AHP). Then, a CBS for treated water pump is developed and verified based on the consensus among experts of Malaysian water industry during the Delphi study. The findings indicate that the CBS for LCC treated water pump in Malaysia is classified into four phases which are; 1) initial cost (planning), 2) operating cost, 3) maintenance and repair cost and 4) disposal and upgrading cost. The AHP weightage comes with the result that operating cost is the biggest expenditure and needs to be more considered along the lifespan of treated water pump. The outcome from this study contributes to a systematic and structured data cost to develop the LCC for water pumps in Malaysia. Also, the result of the AHP can be used to help Malaysia’s water industry practitioners to allocate budget wisely in the future. Furthermore, the results of this study may be a beginning for the Malaysia’s water industry to implement LCC using the developed CBS.
ABSTRAK

Kos kitar hayat (LCC) adalah konsep penting yang berguna dalam pengurangan kos sepanjang jangka hayat aset atau peralatan. Konsep LCC telah diperkenalkan ke dalam pengurusan sistem pengagihan air; bertujuan mencapai peruntukan rangkaian dan kos operasi terendah. Meskipun begitu, wujud halangan yang menjadikan penggunaan LCC agak perlahan iaitu kekurangan rangka kerja atau mekanisme untuk mengumpulkan dan menyimpan data secara sistematis. Maka, bagi menggalakkan penggunaan LCC secara meluas dalam industri air terutamanya sebelum keputusan pembelian pam, satu garis panduan diperlukan. Walau bagaimanapun, struktur pecahan kos (CBS) adalah prasyarat sebelum melaksanakan LCC. Oleh itu, objektif kajian ini adalah untuk mengenal pasti elemen kos yang diperlukan bagia menganggarkan LCC untuk pam air terawat di Malaysia; juga objektif seterusnya untuk menentukan fasa yang paling banyak memerlukan belanja dan fasa penting sepanjang kitaran hayat bagi pam air terawat dan objektif terakhir, untuk membangunkan CBS untuk pam air terawat di Malaysia. Pada peringkat pertama, elemen kos dikumpulkan berdasarkan kajian literatur. Selanjutnya, tinjauan soal selidik telah dijalankan dan data dianalisis dengan menggunakan proses hierarki analitik (AHP). Kemudian, CBS untuk pam air terawat dibangunkan dan disahkan oleh setujuan bersama di kalangan pakar industri air Malaysia semasa kajian Delphi. Hasil kajian menunjukkan bahawa CBS untuk LCC pam air terawat Malaysia diklasifikasikan kepada empat fasa iaitu; 1) kos awalan (perancangan), 2) kos operasi, 3) kos penyelenggaraan dan pembaikan dan 4) pelupusan dan peningkatan kos. Hasil keputusan pemberat dari AHP menunjukkan bahawa kos operasi adalah kos yang paling tinggi dan perlu dipertimbangkan sepanjang hayat pam air terawat. Hasil daripada kajian ini menyumbang kepada kos data yang sistematik dan berstruktur untuk membangunkan LCC bagi pam air di Malaysia. Juga, keputusan AHP boleh digunakan bagi membantu pengamal industri air Malaysia dalam peruntukan belanjawan yang bijak pada masa hadapan. Selain itu, hasil kajian ini berupaya menjadi permulaan bagi industri air Malaysia untuk melaksanakan LCC menggunakan CBS yang dibangunkan.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of the Research 1
1.2 Problem statement 4
1.3 Objectives of the Research 8
1.4 Scope of the Research 8
1.5 Research Methodology 9
 1.5.1 Literature Review 9
 1.5.2 Interview question 9
 1.5.3 Questionnaire surveys 10
 1.5.4 Analytical Hierarchy Process (AHP) approach 10
 1.5.5 Delphi method 11
1.6 Significance of the Research 11
1.7 Organization of the study 12

2 LITERATURE REVIEW 14
2.1 Introduction 14
2.2 Asset management concept 14
2.3 Asset management and its relation with life cycle cost 16
2.4 Drinking water system 17
2.5 Pumping system in water distribution system 19
2.6 Treated Water Pump system in Malaysia 20
2.7 Life Cycle Costing (LCC) 22
 2.7.1 LCC: The definition and implementation 22
 2.7.2 The History of LCC 23
 2.7.3 LCC and data: The issues 24
 2.7.4 LCC and Cost Breakdown Structure (CBS) 25
2.8 Cost Breakdown Structure (CBS): The Definitions 27
 2.8.1 CBS: The data structure 28
 2.8.2 CBS: The Characteristics 31
 2.8.3 CBS: The dependability of data required with the life cycle stages 32
 2.8.4 CBS: The previous research 34
 2.8.5 The further consideration in CBS 37
2.9 Life cycle cost elements 40
2.10 LCC of pump 42
 2.10.1 Initial cost 42
 2.10.2 Installation Cost and Commissioning Cost 44
 2.10.3 Energy Costs 45
 2.10.4 Operating Costs 45
 2.10.5 Maintenance and Repair costs 45
 2.10.6 Replacement cost 46
 2.10.7 Spare part inventories 47
 2.10.8 Sequence of work 47
3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Methods

3.3 Research methods to achieve First Research Objective

3.3.1 Literature Review

3.3.2 The design of the questionnaire during the Delphi method

3.4 Research methods to achieve Second Research Objective

3.4.1 Questionnaire survey

3.4.1.1 Develop Questionnaire

3.4.2 Analytic Hierarchy Process (AHP) Approach

3.4.3 The Combined method Delphi and Analytic Hierarchy Process (AHP) previous research

3.4.4 Data analysis using Analytic Hierarchy Process (AHP)

3.4.4.1 The step in Analytic Hierarchy Process (AHP)

3.4.4.2 Hierarchical structure

3.4.4.3 Pair wise comparisons

3.4.4.4 Comparison matrix

3.4.4.5 Priority Vectors

3.4.4.6 Consistency Index and Consistency Ratio

3.5 Research Methodology to achieve Third Objective

3.5.1 Interview Research Question

3.5.1.1 Design of the interview research

3.5.2 Delphi Method

3.5.2.1 The Delphi process
3.5.2.2 Expert Selection 77
3.5.2.3 Sampling Method of Respondents 80
3.5.2.4 Conducting the Delphi Study to develop CBS 81
3.5.2.5 First Round of Delphi Method 82
3.5.2.6 Second Round of Delphi Method 82
3.5.2.7 Third Round of Delphi Method 83
3.5.2.8 Four Round of Delphi Method 83

3.6 Expert opinion and formation of Cost Breakdown Structure (CBS) 84
3.6.1 Data analysis using content analysis 84
3.6.2 Validation process for CBS developed 86

3.7 Summary 88

4 DATA COLLECTION AND ANALYSIS 89
4.1 Introduction 89
4.2 Literature Review Results 90
4.3 Analytical Hierarchy Process (AHP) result and Analysis 90
4.4 Experts’ Opinions during the Delphi method 95
4.5 Results of Delphi analysis techniques 97
4.6 Development of CBS hierarchy for LCC treated water pump in Malaysia 97
4.7 Life Cycle Cost Breakdown Data Structure For Treated Water Pump: Initial Phase cost 102
4.8 Life Cycle Cost Breakdown Data Structure for Treated Water Pump: Operating cost phase 109
4.9 Life Cycle Cost Breakdown Data Structure for Treated Water Pump: Maintenance and Repair cost phase 114
4.10 Life Cycle Cost Breakdown Data Structure for Treated Water Pump: Disposal and Upgrading cost phase 120
5 RESULTS AND DISCUSSION

5.1 Introduction 123
5.2 First objective: Literature review comparison 124
5.3 Second objective: The weightage and prioritization of every main cost elements in CBS for Treated Water Pump LCC in Malaysia 128
5.3 Third objective: CBS developed for Treated Water Pump 129
 5.3.1 Initial cost phase 130
 5.3.2 Operating cost phase 130
 5.3.3 Maintenance and Repair cost phase 130
 5.3.4 Disposal and Upgrading cost 131
5.5 The validation of CBS developed 131
5.6 Summary 134

6 CONCLUSIONS AND RECOMMENDATIONS 135

6.1 Introduction 135
6.2 Conclusions 137
6.3 Implications and Contribution to the Knowledge 137
6.4 Implications to the Industry 137
6.5 Thesis Limitations 138
6.6 Directions for Further Research 140

REFERENCES 142

Appendices A-E 171-207
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The CBS Characteristics summarization</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Life cycle phases associated with industries</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Cost Elements in previous studies</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Example of AHP Rating scale table</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>The previous research of combined Delphi method and AHP approach</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Scale of Relative Importance</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Example Primary questionnaire design: effective criteria and pair wise comparison</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Example of Pair wise comparison matrix tabulation for treated water pump</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Random Consistency Index (RI)</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Respondent’s background and their experiences in Malaysia’s water industry</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>The example of table content analysis for cost elements selected by the respondents</td>
<td>86</td>
</tr>
<tr>
<td>4.1</td>
<td>Result computed from the AHP survey among ten respondents</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Group judgment matrix derived from WGMM</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Final results computed for each cost category</td>
<td>93</td>
</tr>
<tr>
<td>4.4</td>
<td>Water Industry Experts selected as the respondents for Delphi Method Participation</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Description for each level of CBS and its explanation for Initial Phase cost</td>
<td>104</td>
</tr>
</tbody>
</table>
4.6 Description for each level of CBS and its explanation for Operating Phase cost

4.7 Description for each level of CBS and its explanation for Maintenance and Repair Phase cost

4.8 Description for each level of CBS and its explanation for Disposal & Upgrading Phase cost

5.1 Comparison between Two Sources of Cost Elements for Development of CBS of Treated Water Pump in Malaysia

5.2 Comparison of Cost Element between the LCC Formulas and CBS Developed
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Water Treatment Process</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>Life Cycle Cost Adoption by sectors</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>LCC Process</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>LCC Process and the stages</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Level of data structure</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>CBS of the cost of each phase of project(construction industry)</td>
<td>35</td>
</tr>
<tr>
<td>2.7</td>
<td>Life cycle stages</td>
<td>36</td>
</tr>
<tr>
<td>2.8</td>
<td>Example Draft of Cost Breakdown Structure for Life Cycle Costing</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>The Elements of Pump LCC</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>Top Level of LCC Tree</td>
<td>43</td>
</tr>
<tr>
<td>2.11</td>
<td>Acquisition Cost Tree</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Flowchart of the research methodology</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Expected hierarchical structure of CBS treated water pump in Malaysia</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Flow chart for AHP weighting</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Example validation of CBS during Delphi Method Fourth Round Analysis on Planning and Design Phase</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Decision Hierarchy for the selection of most budget spent and important phase in life cycle Stages for treated water pump</td>
<td>94</td>
</tr>
<tr>
<td>4.2</td>
<td>Development of CBS framework</td>
<td>98</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Final Draft of CBS for Treated Water Pump in Malaysia</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Breakdown structure of Initial Phase cost</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>Breakdown structure of Operating Phase Cost</td>
<td>110</td>
</tr>
<tr>
<td>4.6</td>
<td>Breakdown structure of Maintenance and Repair cost</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>Breakdown structure of Disposal and Upgrading Phase cost</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>The CBS developed with weightage percentage from AHP analysis</td>
<td>133</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>CBS</td>
<td>Cost Breakdown Structure</td>
</tr>
<tr>
<td>CI</td>
<td>Consistency Index</td>
</tr>
<tr>
<td>CR</td>
<td>Consistency Ratio</td>
</tr>
<tr>
<td>CSF</td>
<td>Critical Success Factor</td>
</tr>
<tr>
<td>JKR</td>
<td>Jabatan Kerja Raya</td>
</tr>
<tr>
<td>KKH</td>
<td>Kos Kitar Hayat</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Costing</td>
</tr>
<tr>
<td>LCCBS</td>
<td>Life Cycle Cost Breakdown Structure</td>
</tr>
<tr>
<td>MPAM</td>
<td>Manual Pengurusan Aset Menyeluruh</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operating Expense</td>
</tr>
<tr>
<td>RCI</td>
<td>Random Consistency Index</td>
</tr>
<tr>
<td>SPK</td>
<td>Struktur Pecahan Kos</td>
</tr>
<tr>
<td>SPAN</td>
<td>Suruhanjaya Perkhidmatan Air Negara</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Table of cost elements from previous studies</td>
<td>170</td>
</tr>
<tr>
<td>B</td>
<td>Questionnaire to determine the weightage of most budget spent and important phase in life cycle stages for treated water pump</td>
<td>176</td>
</tr>
<tr>
<td>C</td>
<td>Interview Questions for Expert Opinion on the Cost Elements For Cost Breakdown Structure of Treated Water Pump</td>
<td>177</td>
</tr>
<tr>
<td>C1</td>
<td>Final Draft of Cost Breakdown Structure Treated Water Pump</td>
<td>176</td>
</tr>
<tr>
<td>D</td>
<td>AHP calculations</td>
<td>185</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Asset management is noticeable by its highly structured approach to identify assets and to be familiar with the assets very well (Harlow, 2001). Besides, it can be defined as a set of processes managing assets through their life cycles and must be practicably implemented in a systematic way. Asset management also mentioned as an holistic approach to run infrastructures that combines engineering principles with well business practices, economic theory and information management as well as the traditional operational matters related to the maintenance of assets (USEPA, 2006). However, the asset management process should draw out from design, procurement and installation to achieve even better value through operation, maintenance and retirement of the complete life cycle (Schuman, 2005). Thus, all life cycles within a system must be included. Asset life-cycle considers the design, construction, commissioning, operating, maintaining, repairing, modifying, replacing and the disposal of assets (Ambrose et al. 2008).

Delivering a quality water service to public requires the pipe networks and the supporting pump and treatment system as the facilities (Brighu, 2008). However, Nicklow et al. (2009) indicates that the water distribution system progressively deteriorates over time with internal corrosion and depositions, leading to the loss of lifting capacity in pipes and directly increasing the pump
pressure and energy costs, pressure hesitancy, faulty pressure at customers’ premises and problems with water quality. This is why the system of water supply infrastructures throughout the world became deteriorated (Watson et al., 2001; Engelhardt et al., 2003; Rahman and Vanier, 2004). Hence, water utilities must analyse asset condition, performance, remaining life and risks to facilitate improved asset maintenance investment decision-making (Urquhart, 2006).

Considering the issue of deterioration and high cost in water asset, Engelhardt et al. (2003) proposed Life Cycle Costing (LCC) concept to water distribution system management, which aims at attaining the lowest network provision and operating cost when all private and societal parties consider achieving the standards enforced by regulation. Based on Too (2010), LCC is an essential concept in asset management where all costs are reduced. It begins with the initial investment through operation and maintenance, and ends up with disposal. LCC or Whole Life Cycle Cost (WLCC) is sometimes considered as the exercises to identify, track, quantify and calculate the lifetime of an asset. In such a way, LCC has been defined as a decision support tool to prioritise alternatives (Engelhardt et al., 2003). In addition, The American Public Works Association stated that it is crucial for the industry to move from a low bid procurement strategy to LCC strategy (Ambrose et al., 2008). In short, the significances of the strategic level in asset management are the cost optimisation, performance and risk at the design, procurement and decision-making of the infrastructure based on the LCC (Too et al. 2006).

The LCC method is ordinarily applied in pump machinery management. The data required for LCC are costs incurred along the life span of an asset starting from the design until disposal (Brighu, 2008). Currently, the theory of purchasing pumps in the department is to choose a pump only on the basis of the least price quoted and not a pump with low LCC. This is not economical in the long term as a cheap pump may not have a good life cycle rather compared to a pump chosen based on low LCC. This happens when there is a lack of awareness in LCC among pump users. Pump System Matter™ created by The Hydraulic Institute (HI) along with some guidance from the US Department of Energy and other organisations has led the North American pump manufacturers to put their effort in creating awareness and promoting educated
decision-making based on life cycle costs among pump system users (Tutterow et al., 2006). Moreover, many water facilities in pump system have their life cycle costs dominated by energy and maintenance costs (Tutterow et al., 2006).

To decide whether to purchase new pumps or to prolong the pump’s life even though they are usually purchased as individual component, pump will only provide service when it is operating as part of a system (Frenning, 2001). To ensure the efficiency of a pump, it must be consciously matched with its effective lives to obtain the lowest energy and maintenance costs (Frenning, 2001). Moreover, by understanding all the components making up the total cost of a pump system, the energy, operation, and maintenance costs of a pump can be essentially reduced. Thus, LCC has to be considered when designing a system to achieve the aforementioned objective (Hodgson et al., 2002).

Previous study claimed that the success implementation of LCC is based on the availability of data. According to Barringer (2003) and Smit (2009), LCC is a data driven process. However, Barringer (2003) argued that LCC is lack of data and reliable information (Bull, 1993; Goh et al., 2010). This issue therefore brings difficulties in forecasting beyond a long period of time specifically for component life cycle and performance, future operating and maintenance plans and cost as well as the discount rate. Besides, Hodgson et al. (2002) suggested that all of these costs were hidden from the objective when making decision. As a result, LCC implementation became slow as there is a lack of trusted past data of LCC (Korpi, 2008).

In order to develop a comprehensive LCC, one has to list and recognise all kinds of assumptions related to the system as there is little information on operational, system life and support organisations. Similarly, when it comes to maintain proper audit track, it is essential to record and document all changes to data and assumptions during the estimating process. Moreover, Goh et al., (2010) added that the quantity of data needed in LCC is enormous and complex, which caused high time consumption in collecting LCC data. Furthermore, LCC is assumed to have little frameworks (Lindholm et al., 2004) or mechanisms to collect and store the data (Bakis et al., 2003; Schade, 2007).
El-Haram et al., (2002) in their study have developed a framework to collect LCC data in building industry. They tried to solve the main barriers to the successfully implement WLC (also referred as LCC) despite the lack of reliable and consistent data elements including capital cost, facilities management and disposal cost. They also explained how to develop a consistent and flexible framework to collect data for WLC of buildings by looking at the breakdown of cost elements included in LCC. Their study aimed at giving value to all the project team members such as designer, facilities manager, contractor, supplier, and the entire person involved in the project management by concerning the development of Cost Breakdown Structure (CBS) prior making LCC estimation.

Cost Breakdown Structure (CBS) is generally used to confirm that all related cost elements of the system are recognised, convinced and considered. This term may reflect a structured list of all items needed during the LCC process. However, the LCC adoption is lack of generic breakdown structure. In a word, CBS is crucial before applying LCC model. However, not all pump users and asset managers in water industry are aware with LCC. Even Korpi et al. (2008) has conducted a review on constructions with the leasing industry that applied LCC. He had reviewed about 55 published case studies of LCC. The review involved a total of 38 cases from the year 2000 until the year 2007, which produced the list of LCC implementation’s areas including construction, transportation, manufacturing, energy, research and real estate. It was observed that there is only one study of LCC in real estate with none in water industry.

1.2 Problem statement

In Malaysia, LCC concept is introduced through the manual of MPAM (Manual Pengurusan Aset Menyeluruh), which began on 2009 to manage the assets of Malaysia’s government including the water distribution system. Currently, LCC is being actively applied in the construction industry. The alternative was shown by the Public Works Department (PWD); they were urged to guide practitioners to implement LCC in the asset of infrastructure buildings especially in new construction projects in Malaysia. Thus, the Public
Works Department (PWD) has published a guideline in 2012 specially to introduce LCC with the cost elements and the guideline named “Garis Panduan Kos Kitaran Hayat” (KKH). Thus, the same alternative is going to be implement in water industry. However, LCC is actively applied within construction industry (Korpi et.al, 2008). Also happens in Malaysia the basis of purchasing pumps in the department is by choosing a pump only with the least price quoted and not a pump with low LCC (PAAB, 2015). Not only that, Malaysia also lack with framework and mechanisme to collect and store the LCC data or mechanisms to collect and store the data (Lindholm et al., 2004; Bakis et al., 2003; Schade, 2007; PAAB, 2015).

Thus, in order to solve the LCC “data issue” (lacking of framework and mechanisme to collect and store data), the development of Cost Breakdown Structure (CBS) is need to be concern prior making LCC estimation (El-Haram et al., 2002; Jeong et al. 2012; Smit, 2012). At the same time, a LCC framework is a helpful idea to encourage many researchers and practitioners to practice LCC. CBS might counter the problems by enhancing the CBS to increase and standardise the use of LCC (El-Haram et al., 2002; Jeong et al. 2012). Not to mention, the proposed framework is purposively used to collect cost data and to ensure consistency and flexibility of data collection (El-Haram et al., 2002). By doing so, all cost elements can be included without any ignoration (Kishk et al., 2003). Smit (2012) has also explained how NATO develops the generic life cycle cost breakdown structure in the framework for LCC in multinational defence programme. Nevertheless, LCC must be carefully broken down to avoid the “epistemic uncertainty” or uncertainties in results if there is lack of definition in developing the CBS or in excluding any less important cost elements (Goh et al., 2010).

Thus, in this study, the focus of LCC is to develop CBS in Malaysia water industry so that there will be a framework and mechanisme to store the LCC data systematically. Plus, the CBS mainly on the treated water pump as this pump is the highest expenditure spent in most water treatment plant. The highest expenditure is contributed by the energy cost by looking at the bill of electricity consumption (PAAB, 2015). This fact came from the Water Asset
Management Company (WAMCO) established on 5th May 2006 as a wholly owned company under the Minister of Finance Incorporated. PAAB forms a part of the Federal Government’s efforts to restructure the water services industry in the country to achieve better efficiency and quality (PAAB, 2015). Plus, according to report of Water Services Industry Performance published by Suruhanjaya Perkhidmatan Air Malaysia (SPAN) in 2009, the high rate in energy cost was created by the water treatment by 56% in the year 2009. The high electricity tariff was resulted due to many old and inefficient treatment plants that are in operation. Besides, treated water pump stations were declared as the largest consumers of energy in water treatment plant (Headquarters, Department of the Army, 1992). Apart from that, SPAN has also put the KPI on PAAB to calculate the LCC for every water asset leased to the water operator companies migrated to PAAB (PAAB, 2015).

In the meantime, the complexity of asset management is often collaborated with lack of finance, skills and information disrupting the processes of acquiring, commissioning, maintaining, overhauling, and replacing assets at optimum time. A number of decisions such as what assets to acquire, when to carry out maintenance and when to renew or replace assets is to be answered in asset management (Asian Development Bank, 2013). Yet, hundreds of billions of dollars are spent to manage assets all around the world (Frolov et al., 2010). Mostly, the operating cost (for depreciation, maintenance and energy) is driven by the asset base. Plus, the annual expenses for new assets and asset renewal are significant.

According to Lim et al. (2007), high economic cost and environmental issue occur in water treatment, water supply and wastewater treatment. Hence, water and sanitation are hardly to receive any funding due to the pressure caused by struggling economies, large debts and a host of other socio-political matters to the government. The priority was put on the other basic social services such as education and health rather than water and sanitation. Generally, the expenditure in many developing countries on low cost water and sanitation is around 1% and 3% of the government budgets (Annamraju et al., 2001; Lim et al., 2007). Therefore, water supply budgets are often claimed to be underutilised or ineffectively used (Hunter et.al, 2010) due to complicated
decision, which leads to the difficulties in managing the financial as the lifespan of the assets is longer than normal borrowing periods and where revenues are defenceless on asset valuations. At the same time, the same issue of funding has occurred in the Malaysian water industry, which often turns out to be a critical issue.

To address this, PAAB has ensured the availability of the long term funding (The Report Malaysia, 2010). Based on Economic Unit Planning (2006), the development budget is planned through the Malaysia Five-Year Plans, which is in the Ninth Malaysia Plan (2006-2010) where the current financial structure supports the water resource development but lack of the financial support from the government to increase the capacity of enforcement bodies. Thus, to create an effective asset management, the tools required were proposed including decision-making techniques, maintenance strategies and plans, operational strategies and plans, capital works strategies, financial and funding strategies. In water and wastewater utilities where physical assets make up at least 85% of their total asset, the proficient financial management expertise is essential to the asset-concentrated service businesses (Asian Development Bank, 2013). Thus, effective strategic financial plans for the water sector should highlight their prospects to reduce costs (OECD 2009). As a long-term commitment, asset management still needs a plenty of enhancements to achieve good asset management practices (Asian Development Bank, 2013). Therefore, there is a need to concern between what is required and what funds available to be adopted. This will attract the funders on their investments in water and wastewater infrastructures, which further ensures the adequate management and maintenance of the water asset in long term sustainability and security (Environmental Finance Centre New Mexico Tech, 2006; Asian Development Bank, 2013).
1.3 **Objectives of the Research**

Based on the problem statement, the main purpose of this study is to provide the systematic LCC Cost Breakdown Structure (CBS) for treated water pump in Malaysia. Hence, the following objectives were formulated including:

1. To identify the cost element needed for estimating LCC for treated water pumps in Malaysia.
2. To identify the weightage of each LCC main cost element in life cycle phases for treated water pump in Malaysia.
3. To develop cost breakdown structure (CBS) for treated water pumps in Malaysia.

1.4 **Scope of the Research**

The water industry in Malaysia is trying its best to apply asset management in its practice. Nevertheless, asset management especially for the above-ground assets is not commonly practiced in the water industry. Meanwhile, LCC approach is among the core components of asset management process and widely used in many areas of industry or equipment. To implement LCC, there also many processes involved; but this study is only focus to discover the cost elements needed to perform LCC specifically for water pump. LCC cost elements are basically differ from one to another areas and equipment, which need adjustment before being used. The critical cost elements first is identified from literatures then selected for the development of CBS by interviewing the experts through Delphi study. The study was conducted in the states under migration of PAAB, which are Johor, Malacca and Penang. The CBS developed only deal with the treated water pumps, which is a general CBS, so that it can be referred to any studies conducted for improvement in the future.
1.5 Research Methodology

To achieve the stated objectives, this research was carried out using the following methodologies:

1. Literature review;
2. Interview research question;
3. Questionnaire surveys;
4. Analytical Hierarchy Process (AHP); and
5. Delphi method;

1.5.1 Literature Review

The literature review is based on the previous studies related or similar to that of LCC implementation or treated water pump. The cost elements required for the development of LCC model are selected by looking at the frequency it is cited. Next, the most cited cost elements are validated by the opinion of the experts and practitioners through interview session during Delphi Analysis. Once validated, it is included in the Cost Breakdown Structure (CBS) before developing the model. In addition, the review of previous literature also covers the readiness and critical success factors determining the LCC readiness and its implementation factors. Then, these studies are picked to be included in the questionnaire survey based on their suitability to be applied together to overcome the LCC barriers.

1.5.2 Interview question

The Delphi questionnaires used in this research is in a form of interview questions. The interview is conducted during the Delphi process by four rounds. The selected experts are involved along the Delphi rounds to validate the cost elements to develop CBS.
1.5.3 Questionnaire surveys

Questionnaire surveys were used in this study to achieve the third and fourth objectives based on CBS developed to determine which of the phase in lifespan of treated water pump that affect the budget allocation. At the same time, it guides the decision makers to properly allocate future budget based on LCC of treated water pumps in Malaysia. The objective of using questionnaire in the third objective is to collect the information and opinions among the experts regarding to the most spent budget along the lifespan of treated water pump. This questionnaire is distributed during the last round of Delphi process.

Another survey is conducted to achieve the fourth objective to determine the readiness level among Malaysian water industry towards the implementation of LCC and CBS developed. However, the survey conducted at this level is in the form of response survey, which is called Likert-scale questionnaire.

1.5.4 Analytical Hierarchy Process (AHP) approach

As the financial issue arisen in the water industry leads to the deterioration of water assets, which is crucial in ensuring the better management of budget allocation. Garcia et al. (2004) mentioned that the reason behind the difficulty in allocating the cost is that water services require great capital investments that are fixed, which is equal to the quantity of water consumed.

Hence, the limited budget needs to be in proper allocation to solve this issue. A decision making tool can help water utility managers in making their financial decision. One of the decision tools applied in many industries currently is Analytic Hierarchy Process (AHP). AHP is known as an effective tool for priority setting since it combines empirical and system approaches in solving problems. According to Vaidya et al. (2006), AHP is a tool invented to make decision hierarchy and is widely used as a multiple criteria decision-making tools. AHP is able to assist decision maker in water asset management and industries to allocate their limited budget into efficient budget management
by looking into the priority of cost spent along the life cycle of a plant or equipment.

1.5.5 Delphi method

Delphi method is used to collect the data and validate the collected data where the experts’ opinions are used with the Delphi undergoing four rounds. Jeong et al. (2012) mentioned that Delphi method is an analysis that involves expert’s opinions and advices to collect certified opinions and to produce a combined judgment. The idea of applying Delphi method is to ensure the validity and neutrality of CBS development. Agreed by Okoli et al. (2004), this method in various past studies was not only applied for “Forecasting and Issue Identification/ Prioritisation”, but also in the “Concept/Framework Development”. This has actually supported the reason of selecting Delphi method as this research objective is to develop Cost Breakdown Structure (CBS) for treated water pump.

1.6 Significance of the Research

The significance of the study commonly outlines the importance, practice and future of the study. Thus the significances of this research can be seen in four aspects:

a) The result contributes to the academic world in term of the compilation of cost elements needed to estimate LCC for water pump in Malaysia;

b) The result contributes in the future research to calculate the LCC of water pump with the real value and numbers;

c) Results from this study can be used as guideline for developing the Cost Breakdown Structure (CBS) for Life Cycle Cost (LCC) for water pump in Malaysia;
d) Results from this study also propose a systematic and structured data cost to develop LCC for water pumps in Malaysia;

e) The results of the analytical study on the identifying the weightage of each LCC main cost element in life cycle phases for water pump in Malaysia can be use to help the Malaysia’s water industry practitioners to allocate budget wisely in future;

f) The results of this study may be a beginning for the Malaysia’s water industry to implement LCC using the CBS developed.

g) The result will contributes consultants, water asset managers, municipalities, and others a relevant overview of all the key factors essential for making the better decision to lower the cost over the total lifetime of a pump system.

1.7 Organisation of the Study

This thesis is divided into six chapters;

Chapter 1 introduces the whole picture of the study consisting research background, problem statement, objectives of the study, scope of the study, methodology, significance of the study and the organisation of the study.

Chapter 2 highlights the review on the concept of asset management and its relations with LCC. Furthermore, an overview on cost elements cited in previous study of LCC is presented, which is used to develop the interview questions during the first round of Delphi method. It describes the cost elements involved to develop a CBS for LCC model. Subsequently, the LCC concepts and its descriptions are explored by looking at the literature and past studies.

Chapter 3 describes the methods involved in this study. A number of literatures are reviewed to select the best method for this study. Next, the proper selection of the best knowledgeable experts involved in the Delphi interview
session is explained. The Analytical Hierarchy Process (AHP) method is described as well as its purposes in this study are reviewed.

Chapter 4 reports the data collected and analysis conducted based on the responses from interview session during the Delphi study. Besides, this chapter reports the result from AHP calculation to determine the weightage for each main cost and CBS developed for treated water pump. Then, the result from all the data analyzed is presented at the end of this chapter.

Chapter 5 discusses the findings from the analysis of the questionnaires and experts’ opinions in answering the objectives of the study. The discussion refers the results of analysis of the experts’ opinions from Delphi analysis to the the Analytical Hierarchy Process (AHP) result presented in Chapter 4 and next , to the development of cost breakdown structure (CBS). This chapter discusses the agreement or contradiction and difference between the outcomes of the literature review, the results derives from Analytical Hierarchy Process (AHP) and the results of the experts’ opinions during Delphi study.

Chapter 6 highlights the main conclusion where all objectives for this study are achieved with several contributions explained. The direction for future study is also explored at the end of this chapter.
REFERENCES

Annamraju, S., Calaguas, B., & Gutierrez, E. (2001). Financing water and sanitation. Key issues in increasing resources to the Sector, Water Aid briefing paper.

Environmental Protection Agency (EPA) of Ireland (2011). *Water Treatment Manual: Disinfection*. Environmental Protection Agency PO Box 3000, Johnstown Castle Estate County Wexford, Ireland.

Miller, R. S. (1992). *Corrosion in Pumps.* In Proceedings of the Ninth International Pump Users Symposium, Turbomachinery Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas (pp. 119-127).

APPENDIX A

Table of cost elements from previous studies

<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Elements</th>
<th>Reference/s</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Cost Elements</td>
<td>Reference/s</td>
<td>Frequencies</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
</tbody>
</table>
APPENDIX A

<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Elements</th>
<th>Reference/s</th>
<th>Frequencies</th>
</tr>
</thead>
</table>
APPENDIX A

<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Elements</th>
<th>Reference/s</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Utilities cost</td>
<td>Shankar Kshirsagar et.al. (2010), Barringer et.al. (1996).</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Operating personnel cost</td>
<td>The Research and Technology Organisation (RTO) of NATO (2007), Humphries et.al. (2004).</td>
<td>2</td>
</tr>
<tr>
<td>No.</td>
<td>Cost Elements</td>
<td>Reference/s</td>
<td>Frequencies</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>23.</td>
<td>Environmental cost</td>
<td>Witik et al. (2011), Goedecke et al. (2007), Li et al. (2014).</td>
<td>3</td>
</tr>
<tr>
<td>33.</td>
<td>Site clearance</td>
<td>El-Haram (2002)</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX A

<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Elements</th>
<th>Reference/s</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
<td>Quality control</td>
<td>Fabrycky and Blanchard (1991), Utne (2009),</td>
<td>2</td>
</tr>
<tr>
<td>39.</td>
<td>Initial training cost</td>
<td>Utne (2009), Barringer et.al, (1996),</td>
<td>2</td>
</tr>
<tr>
<td>40.</td>
<td>Decommissioning cost</td>
<td>Utne (2009), Frenning (2001)</td>
<td>2</td>
</tr>
</tbody>
</table>
APPENDIX B
QUESTIONNAIRE
To determine the weightage of most budget spent and important phase in life cycle stages for treated water pump.

Question: What are the highest cost spent along the pump life span/ operation? You may highlight the number that represents the intensity of importance to compare the cost.

<table>
<thead>
<tr>
<th>Intensity of importance</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equal Importance</td>
</tr>
<tr>
<td>2</td>
<td>Weak</td>
</tr>
<tr>
<td>3</td>
<td>Moderate importance</td>
</tr>
<tr>
<td>4</td>
<td>Moderate Plus</td>
</tr>
<tr>
<td>5</td>
<td>Strong Importance</td>
</tr>
<tr>
<td>6</td>
<td>Strong Plus</td>
</tr>
<tr>
<td>7</td>
<td>Very Strong or demonstrated importance</td>
</tr>
<tr>
<td>8</td>
<td>Very very strong</td>
</tr>
<tr>
<td>9</td>
<td>Extreme importance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>Operating cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>Operating cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>Operating cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
</tr>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Initial cost</td>
<td>Operating cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
</tr>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Operating cost</td>
<td>Operating cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
</tr>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Operating cost</td>
<td>Operating cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
<td>Disposal & Upgrading cost</td>
<td>Maintenanc e & Repair cost</td>
</tr>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>Operating cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
<th>Disposal & Upgrading cost</th>
<th>Maintenanc e & Repair cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent Most than</td>
<td>9 8 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Equal 7 6 5 4 3 2 1</td>
<td>2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Spent Less than</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
</tbody>
</table>
APPENDIX C
Interview Questions
Expert Opinion on the Cost Elements For Cost Breakdown
Structure of Treated Water Pump

LIFE CYCLE COST
FOR WATER TREATMENT PLANT
(TREATED WATER PUMP)

I'm conducting a research for the above subject. Your input is critical to the success of this research. Thank you for your time and all your response and cooperation are really highly appreciated.
Nurul Wahida Binti Rosli, Doctoral student.
Jabatan Pengurusan Harta, Fakulti Geoinformasi dan Harta Tanah,
Universiti Teknologi Malaysia,
81310 UTM Skudai,
Johor Bahru, Johor
Section A: Respondent details.

Please provide correct information for each item (*required).

I. What is your name?

II. What is your position in this company?

III. How many years of experience in water industry

xx

Section B: Knowledge on Life Cycle Cost (LCC).

Please (✓) to answer question1.

1. Do you ever hear of the theory of LCC?

2. If yes, where do you get the information? (Please specify.)

If no/ never heard of LCC theory, please proceed to another section.
Section C: Cost Element involves during the Capital phase (CAPEX) of a TREATED WATER PUMP OF WTP.

Question 1 needs you to tick (√) in the box [] to answer all questions.

Based on your experience and knowledge within water industry, which all of these are included during the CAPEX OF A TREATED WATER PUMP?

Below are the cost elements that need for Life Cycle Cost for TREATED WATER PUMP. The cost elements may not limit to what we been listed. You may add more lists of cost elements if related to the CAPEX of TREATED WATER PUMP.

1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Element/s</th>
<th>Please tick (√) if related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Construction cost</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Research and Development (R&D) cost</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Land Acquisition cost</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Land Inspection and Survey</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Site Preparation Cost</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Excavation work, piling work</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Design cost</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Drawing cost</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Authority Fee</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Installation equipment cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What the equipment?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Material purchase cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- What the material purchase?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Testing Procedure cost</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Utility Detection & Mapping (UMP)</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Professional Consultant cost/ Consultancies Fees</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Labor cost</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Equipment Purchasing Cost</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Town Planning cost</td>
<td></td>
</tr>
</tbody>
</table>
2. Other cost. Please state/specify if there is other cost/s involves during CAPEX phase based on experience/knowledge.

Section D: Cost Element involves during the Capital phase (OPEX) A TREATED WATER PUMP OF WTP in Malaysia.

Question 1 needs you to tick (√) in the box to answer all questions.

1. Based on your experience and knowledge within water industry, which all of these are included during the OPEX (OPERATION & MAINTENANCE) of A TREATED WATER PUMP OF WTP. In the next page is the list of cost elements that needed for operation of Life Cycle Cost for TREATED WATER PUMP. The cost elements may not limited to what we been listed. You may add more lists of cost elements if related to the OPEX of TREATED WATER PUMP.
<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Element/s</th>
<th>Please tick (√) if related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Electricity cost</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Chemical cost/ coagulant cost</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Cleaning cost</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Laboratory Test cost</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Lease</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Insurance</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Raw Water Purchase cost</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Storage cost</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Labor cost</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Waste disposal cost</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Supervision cost</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Administration cost</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Service cost</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Repair cost</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Replacement cost</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Installation of a new equipment cost</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Tooling cost</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Renewal cost</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Rehabilitation cost</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Inspection cost</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Lubrication cost</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Material Maintenance cost</td>
<td></td>
</tr>
</tbody>
</table>

2. Other cost. Please state/specify if there is other cost/s involves during operation activities based on your experience/knowledge.

3. In the next page is the list of cost elements that needed for operation of Life Cycle Cost for TREATED WATER PUMP. The cost elements may not limited to what we been listed. You may add more lists of cost elements if related to the MAINTENANCE of TREATED WATER PUMP.
<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Element/s</th>
<th>Please tick (√) if related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Labor cost</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Supervision cost</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Administration cost</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Training cost</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Overhaul cost</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Spare part cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is/are the spare part that always needed in water treated pump?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tooling cost</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Material maintenance cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is/are the material/s that always needed in water treated pump?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Miscellaneous cost.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Please specify.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Others (Please specify)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Others (Please specify)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Section E: Cost Element involves during the End of Life of a TREATED WATER PUMP OF WTP.

Question 1 needs you to tick (√) in the □ box to answer all questions.

1. Based on your experience and knowledge within water industry, which all of these are included during the End of Life) of a TREATED WATER PUMP OF WTP. Below are the cost elements that need for Life Cycle Cost for TREATED WATER PUMP. The cost elements may not limited to what we been listed. You may add more lists of cost elements if related to the End-of-Life of TREATED WATER PUMP.
<table>
<thead>
<tr>
<th>No.</th>
<th>Cost Element/s</th>
<th>Please tick (√) if related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Upgrade cost</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Sells of a equipment</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Demolition cost</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Site and Land Clearance / Clean up</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Disposal cost</td>
<td></td>
</tr>
</tbody>
</table>

2. Other cost. Please state/specify if there is other cost/s involves during operation and maintenance activities based on your experience/knowledge.

Thank you for your time and opinions. If you have any inquiry, please email me at wahidawinn@yahoo.com.my or contact my handset at 017-7445141.

Nurul Wahida binti Rosli
Doctoral Student
Department of Property Management
Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia
Skudai
Johor.
APPENDIX C1
FINAL DRAFT OF
COST BREAKDOWN STRUCTURE
TREATED WATER PUMP
IN MALAYSIA
APPENDIX D

AHP CALCULATION

RESPONDENT 1:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.167</td>
<td>2</td>
<td>8</td>
<td>0.220</td>
<td>22%</td>
<td>0.997</td>
<td>4.529</td>
</tr>
<tr>
<td>OC</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>0.553</td>
<td>55%</td>
<td>2.746</td>
<td>4.967</td>
</tr>
<tr>
<td>MR</td>
<td>0.5</td>
<td>0.333</td>
<td>1</td>
<td>8</td>
<td>0.188</td>
<td>19%</td>
<td>0.790</td>
<td>4.193</td>
</tr>
<tr>
<td>DU</td>
<td>0.125</td>
<td>0.125</td>
<td>0.125</td>
<td>1</td>
<td>0.038</td>
<td>4%</td>
<td>0.139</td>
<td>4.128</td>
</tr>
<tr>
<td></td>
<td>7.625</td>
<td>1.625</td>
<td>6.125</td>
<td>25.00</td>
<td>1.000</td>
<td>100%</td>
<td>0.159</td>
<td>4.454</td>
</tr>
</tbody>
</table>

Consistency Index: 0.151
Consistency ratio: 0.168

RESPONDENT 2:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.333</td>
<td>0.300</td>
<td>6</td>
<td>0.190</td>
<td>19%</td>
<td>0.771</td>
<td>4.059</td>
</tr>
<tr>
<td>OC</td>
<td>3</td>
<td>1.000</td>
<td>1</td>
<td>8</td>
<td>0.409</td>
<td>41%</td>
<td>1.690</td>
<td>4.135</td>
</tr>
<tr>
<td>MR</td>
<td>2.0</td>
<td>1.000</td>
<td>1</td>
<td>7</td>
<td>0.357</td>
<td>36%</td>
<td>1.456</td>
<td>4.080</td>
</tr>
<tr>
<td>DU</td>
<td>0.167</td>
<td>0.125</td>
<td>0.143</td>
<td>1</td>
<td>0.044</td>
<td>4%</td>
<td>0.178</td>
<td>4.017</td>
</tr>
<tr>
<td></td>
<td>6.167</td>
<td>2.458</td>
<td>2.643</td>
<td>22.00</td>
<td>1.000</td>
<td>100%</td>
<td>0.159</td>
<td>4.072</td>
</tr>
</tbody>
</table>

Consistency Index: 0.024
Consistency ratio: 0.027
RESPONDENT 3:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>3</td>
<td>0.173</td>
<td>17%</td>
<td>0.718</td>
<td>4.155</td>
</tr>
<tr>
<td>OC</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0.471</td>
<td>47%</td>
<td>2.069</td>
<td>4.396</td>
</tr>
<tr>
<td>MR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0.309</td>
<td>31%</td>
<td>1.283</td>
<td>4.149</td>
</tr>
<tr>
<td>DU</td>
<td>0.333</td>
<td>0.111</td>
<td>0.143</td>
<td>1</td>
<td>0.047</td>
<td>5%</td>
<td>0.201</td>
<td>4.260</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.333</td>
<td>2.311</td>
<td>3.143</td>
<td>20.000</td>
<td>1.000</td>
<td>100%</td>
<td>λ_max</td>
<td>4.240</td>
</tr>
</tbody>
</table>

Consistency Index: 0.080
Consistency ratio: 0.089

RESPONDENT 4:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.125</td>
<td>0.250</td>
<td>2</td>
<td>0.077</td>
<td>8%</td>
<td>0.324</td>
<td>4.189</td>
</tr>
<tr>
<td>OC</td>
<td>8</td>
<td>1.000</td>
<td>2</td>
<td>8</td>
<td>0.513</td>
<td>51%</td>
<td>2.224</td>
<td>4.338</td>
</tr>
<tr>
<td>MR</td>
<td>4</td>
<td>1.000</td>
<td>1</td>
<td>8</td>
<td>0.365</td>
<td>36%</td>
<td>1.551</td>
<td>4.254</td>
</tr>
<tr>
<td>DU</td>
<td>0.306</td>
<td>0.125</td>
<td>0.125</td>
<td>1</td>
<td>0.046</td>
<td>5%</td>
<td>0.194</td>
<td>4.254</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13.500</td>
<td>2.250</td>
<td>3.375</td>
<td>19.000</td>
<td>1.000</td>
<td>100%</td>
<td>λ_max</td>
<td>4.259</td>
</tr>
</tbody>
</table>

Consistency Index: 0.086
Consistency ratio: 0.096
Respondent 5:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.111</td>
<td>0.167</td>
<td>3</td>
<td>0.083</td>
<td>8%</td>
<td>0.339</td>
<td>4.062</td>
</tr>
<tr>
<td>OC</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0.459</td>
<td>46%</td>
<td>1.984</td>
<td>4.326</td>
</tr>
<tr>
<td>MR</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0.413</td>
<td>41%</td>
<td>1.734</td>
<td>4.200</td>
</tr>
<tr>
<td>DU</td>
<td>0.333</td>
<td>0.125</td>
<td>0.125</td>
<td>1</td>
<td>0.045</td>
<td>5%</td>
<td>0.182</td>
<td>4.024</td>
</tr>
<tr>
<td></td>
<td>16.33</td>
<td>2.236</td>
<td>2.292</td>
<td>20.000</td>
<td>1.000</td>
<td>100%</td>
<td>λ_max</td>
<td>4.153</td>
</tr>
</tbody>
</table>

Consistency Index: 0.051
Consistency ratio: 0.057

Respondent 6:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.143</td>
<td>0.167</td>
<td>4</td>
<td>0.097</td>
<td>10%</td>
<td>0.397</td>
<td>4.093</td>
</tr>
<tr>
<td>OC</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0.434</td>
<td>43%</td>
<td>1.874</td>
<td>4.322</td>
</tr>
<tr>
<td>MR</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0.428</td>
<td>43%</td>
<td>1.819</td>
<td>4.255</td>
</tr>
<tr>
<td>DU</td>
<td>0.25</td>
<td>0.125</td>
<td>0.111</td>
<td>1</td>
<td>0.042</td>
<td>4%</td>
<td>0.168</td>
<td>4.019</td>
</tr>
<tr>
<td></td>
<td>14.250</td>
<td>2.268</td>
<td>2.278</td>
<td>22</td>
<td>1</td>
<td>100%</td>
<td>λ_max</td>
<td>4.172</td>
</tr>
</tbody>
</table>

Consistency Index: 0.057
Consistency ratio: 0.064
RESPONDENT 8:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.33</td>
<td>9</td>
<td>8</td>
<td>0.330</td>
<td>33%</td>
<td>1.377</td>
<td>4.169</td>
</tr>
<tr>
<td>OC</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>0.569</td>
<td>57%</td>
<td>2.468</td>
<td>4.340</td>
</tr>
<tr>
<td>MR</td>
<td>0.111</td>
<td>0.11</td>
<td>1</td>
<td>1</td>
<td>0.050</td>
<td>5%</td>
<td>0.201</td>
<td>4.010</td>
</tr>
<tr>
<td>DU</td>
<td>0.125</td>
<td>0.11</td>
<td>1</td>
<td>1</td>
<td>0.051</td>
<td>5%</td>
<td>0.205</td>
<td>4.036</td>
</tr>
<tr>
<td></td>
<td>4.236</td>
<td>1.55</td>
<td>20</td>
<td>19</td>
<td>1.000</td>
<td>100%</td>
<td>λ max</td>
<td>4.139</td>
</tr>
</tbody>
</table>

Consistency Index 0.046
Consistency ratio 0.051

RESPONDENT 7:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.111</td>
<td>0.125</td>
<td>3</td>
<td>0.073</td>
<td>7%</td>
<td>0.299</td>
<td>4.064</td>
</tr>
<tr>
<td>OC</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>0.525</td>
<td>52%</td>
<td>2.274</td>
<td>4.334</td>
</tr>
<tr>
<td>MR</td>
<td>8</td>
<td>0.5</td>
<td>1</td>
<td>9</td>
<td>0.361</td>
<td>36%</td>
<td>1.577</td>
<td>4.366</td>
</tr>
<tr>
<td>DU</td>
<td>0.333</td>
<td>0.111</td>
<td>0.111</td>
<td>1</td>
<td>0.041</td>
<td>4%</td>
<td>0.163</td>
<td>4.025</td>
</tr>
<tr>
<td></td>
<td>18.33</td>
<td>1.722</td>
<td>3.236</td>
<td>22</td>
<td>1.000</td>
<td>100%</td>
<td>λ max</td>
<td>4.197</td>
</tr>
</tbody>
</table>

Consistency Index 0.066
Consistency ratio 0.073
RESPONDENT 9:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.5</td>
<td>5</td>
<td>8</td>
<td>0.359</td>
<td>36%</td>
<td>1.500</td>
<td>4.183</td>
</tr>
<tr>
<td>OC</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>0.489</td>
<td>45%</td>
<td>2.038</td>
<td>4.171</td>
</tr>
<tr>
<td>MR</td>
<td>0.2</td>
<td>0.25</td>
<td>1</td>
<td>3</td>
<td>0.109</td>
<td>11%</td>
<td>0.435</td>
<td>4.010</td>
</tr>
<tr>
<td>DU</td>
<td>0.125</td>
<td>0.11</td>
<td>0.333</td>
<td>1</td>
<td>0.044</td>
<td>4%</td>
<td>0.179</td>
<td>4.054</td>
</tr>
</tbody>
</table>

| | 3.325 | 1.86 | 10.33 | 21.00 | 1.000 | 100% | λ max | 4.104 |

Consistency Index 0.035
Consistency ratio 0.039

RESPONDENT 10:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>WEIGHTED SUM MATRIX</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.11</td>
<td>0.2</td>
<td>3</td>
<td>0.089</td>
<td>9%</td>
<td>0.361</td>
<td>4.068</td>
</tr>
<tr>
<td>OC</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>0.564</td>
<td>56%</td>
<td>2.409</td>
<td>4.271</td>
</tr>
<tr>
<td>MR</td>
<td>5</td>
<td>0.5</td>
<td>1</td>
<td>5</td>
<td>0.297</td>
<td>30%</td>
<td>1.274</td>
<td>4.287</td>
</tr>
<tr>
<td>DU</td>
<td>0.333</td>
<td>0.11</td>
<td>0.2</td>
<td>1</td>
<td>0.050</td>
<td>5%</td>
<td>0.202</td>
<td>4.023</td>
</tr>
</tbody>
</table>

| | 15.33 | 1.72 | 3.40 | 18.00 | 1.000 | 100% | λ max | 4.162 |

Consistency Index 0.054
Consistency ratio 0.060
Final results computed for each cost category

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>PRIORITY VECTOR</th>
<th>WEIGHTAGE %</th>
<th>CONSISTENCY MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.186</td>
<td>0.54</td>
<td>3.976</td>
<td>0.145</td>
<td>14</td>
<td>4.046</td>
</tr>
<tr>
<td>OC</td>
<td>5.37</td>
<td>1</td>
<td>1.876</td>
<td>8.34</td>
<td>0.538</td>
<td>34</td>
<td>4.167</td>
</tr>
<tr>
<td>MR</td>
<td>1.85</td>
<td>0.533</td>
<td>1</td>
<td>5.385</td>
<td>0.268</td>
<td>27</td>
<td>4.066</td>
</tr>
<tr>
<td>DU</td>
<td>0.251</td>
<td>0.117</td>
<td>0.186</td>
<td>1</td>
<td>0.049</td>
<td>5</td>
<td>4.014</td>
</tr>
<tr>
<td></td>
<td>8.471</td>
<td>1.836</td>
<td>3.602</td>
<td>18.901</td>
<td>1.000</td>
<td>100</td>
<td>4.073</td>
</tr>
</tbody>
</table>

CI
(Consistency Index) 0.024

CR
(Consistency ratio) 0.027

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL COST</td>
<td>0.220</td>
<td>0.190</td>
<td>0.173</td>
<td>0.077</td>
<td>0.083</td>
<td>0.097</td>
<td>0.073</td>
<td>0.330</td>
<td>0.359</td>
<td>0.089</td>
</tr>
<tr>
<td>OPERATION COST</td>
<td>0.553</td>
<td>0.409</td>
<td>0.471</td>
<td>0.513</td>
<td>0.459</td>
<td>0.434</td>
<td>0.525</td>
<td>0.569</td>
<td>0.489</td>
<td>0.564</td>
</tr>
<tr>
<td>MAINTENANCE AND REPAIR COST</td>
<td>0.188</td>
<td>0.309</td>
<td>0.365</td>
<td>0.413</td>
<td>0.428</td>
<td>0.361</td>
<td>0.050</td>
<td>0.109</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>DISPOSAL AND UPGRADING COST</td>
<td>0.038</td>
<td>0.047</td>
<td>0.046</td>
<td>0.045</td>
<td>0.042</td>
<td>0.041</td>
<td>0.051</td>
<td>0.044</td>
<td>0.050</td>
<td></td>
</tr>
<tr>
<td>CONSISTENCY INDEX</td>
<td>0.151</td>
<td>0.024</td>
<td>0.080</td>
<td>0.086</td>
<td>0.051</td>
<td>0.057</td>
<td>0.066</td>
<td>0.046</td>
<td>0.035</td>
<td>0.054</td>
</tr>
<tr>
<td>CONSISTENCY RATIO</td>
<td>0.168</td>
<td>0.027</td>
<td>0.089</td>
<td>0.096</td>
<td>0.057</td>
<td>0.064</td>
<td>0.073</td>
<td>0.051</td>
<td>0.039</td>
<td>0.060</td>
</tr>
</tbody>
</table>
• Reciprocal of Maintenance and Repair Cost Compared to Operation Cost

\[\frac{1}{1.876} = 0.53 \]

Calculation steps for group judgment matrix using weighted geometric mean method (WGMM).

• Initial Cost Compared to Operation Cost:

\[\sqrt[9]{0.333 \times 0.2 \times 0.125 \times 0.111 \times 0.143 \times 0.111 \times 0.333 \times 0.5 \times 0.111} = 0.186 \]

• Reciprocal of Operation Cost Compared to Initial Cost

\[\frac{1}{0.186} = 5.37 \]

• Initial Cost Compared to Maintenance and Repair Cost:

\[\sqrt[9]{0.5 \times 1 \times 0.25 \times 0.167 \times 0.167 \times 0.125 \times 9 \times 5 \times 0.2} = 0.54 \]

• Reciprocal of Maintenance and Repair Cost Compared to Initial Cost

\[\frac{1}{0.54} = 1.85 \]

• Initial Cost Compared to Disposal and Upgrading Cost:

\[\sqrt[9]{6 \times 3 \times 2 \times 3 \times 4 \times 3 \times 8 \times 8 \times 3} = 3.976 \]

• Reciprocal of Disposal and Upgrading Cost Compared to Initial Cost

\[\frac{1}{3.976} = 0.251 \]

• Operation Cost Compared to Maintenance and Repair Cost:

\[\sqrt[9]{1 \times 1 \times 2 \times 1 \times 1 \times 2 \times 9 \times 4 \times 2} = 1.876 \]
• **Operation Cost Compared to Disposal and Upgrading Cost:**

\[
\frac{3 \times 9 \times 8 \times 8 \times \sqrt[3]{7}}{3 \times 9 \times 9 \times 9} = \frac{8.541}{8.541} = 1
\]

• **Reciprocal of Disposal and Upgrading Cost Compared to Operation Cost**

\[
= \frac{1}{8.541} = 0.117
\]

• **Maintenance and Repair Cost Compared to Disposal and Upgrading Cost:**

\[
\sqrt[3]{\frac{7 \times 7 \times 8 \times 8 \times 9 \times 9 \times 1 \times 3 \times 5}{8 \times 9 \times 9 \times 9}} = \frac{5.385}{5.385} = 1
\]

• **Reciprocal of Disposal and Upgrading Cost Compared to Maintenance and Repair Cost**

\[
= \frac{1}{5.385} = 0.186
\]

Group judgment matrix derived from WGMM:

<table>
<thead>
<tr>
<th>COST CATEGORY</th>
<th>IC</th>
<th>OC</th>
<th>MR</th>
<th>DU</th>
<th>WEIGHTAGE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>1</td>
<td>0.186</td>
<td>0.54</td>
<td>3.976</td>
<td>14%</td>
</tr>
<tr>
<td>OC</td>
<td>5.37</td>
<td>1</td>
<td>1.876</td>
<td>8.54</td>
<td>54%</td>
</tr>
<tr>
<td>MR</td>
<td>1.85</td>
<td>0.533</td>
<td>1</td>
<td>5.385</td>
<td>27%</td>
</tr>
<tr>
<td>DU</td>
<td>0.251</td>
<td>0.117</td>
<td>0.186</td>
<td>1</td>
<td>5%</td>
</tr>
</tbody>
</table>

Total Weightage: 100%
APPENDIX E

RESULT OF DELPHI ANALYSIS

Results of Delphi analysis during Initial Phase

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>• The list of the questionnaires is rearranged on the spot based on PAAB current practice.</td>
</tr>
</tbody>
</table>
| 2. | 1 | • The list of questionnaires is identified and explained on the spot based on PAAB current practice.
 | | • To add and follow the actual and specific sequence of initial phase practiced in PAAB. | |
| 3. | 1 | • To add and follow the actual and specific sequence of initial phase practiced in PAAB. |
| 4. | 1 | • No modification on the whole list of CBS elements in questionnaire. |
| 5. | 1 | • No modification on the whole list of CBS elements in questionnaire. |
| 6. | 1 | • The list of questionnaires is identified and explained on the spot based on SAJH current practice.
 | | • Installation equipment cost is chosen. | |
| | | • Material purchase cost is chosen. |
| | | • Testing procedure cost is chosen. |
| | | • Labour cost is chosen. |
| | | • Equipment purchasing cost is chosen. |
| | | • Commissioning cost is chosen. |
| 7. | 1 | • The list of the questionnaire is identified and explained on the spot based on SAJH current practice. |
| 8. | 1 | • No modification on the whole list of CBS elements in questionnaire. |
| 9. | 1 | • No modification on the whole list of CBS elements in questionnaire. |
INITIAL PHASE
(Previously proposed as CAPEX in questionnaire in the first round)

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
</table>
| 10 | 1 | - The list of the questionnaire is identified and explained on the spot based on SAMB current practice.
- Construction cost is chosen.
- Research & Development (R&D) cost is chosen.
- Excavation and piling work costs are chosen.
- Design cost is chosen.
- Drawing cost is chosen.
- Installation equipment cost is chosen.
- Material purchase cost is chosen.
- Testing procedure cost is chosen.
- Consultancy fee/ cost is chosen.
- Labour cost is chosen.
- Equipment purchasing cost is chosen.
- Tendering preparing cost is chosen.
- Conceptual Design Report (CDR) cost is chosen.
- Interest during construction cost is chosen.
- Testing & Commissioning cost is chosen. |
Initial Phase

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
</table>
| 1. | 2 | • Restructure the hierarchy.
| | | • To include the initial training cost under labour cost. |
| 2. | 2 | • To change the title “CAPEX” to “Initial” phase.
| | | • To include the initial training cost under labour cost. |
| 3. | 2 | • Restructure the hierarchy into the right sequence based on PAAB current practice.
| | | • To eliminate the R&D cost. |
| 4. | 2 | • Restructure the hierarchy into the right sequence based on PAAB current practice.
| | | • To eliminate the excavation cost. |
| 5. | 2 | • No modification. |
| 6. | 2 | • No modification. |
| 7. | 2 | • No modification. |
| 8. | 2 | • No modification. |
| 9. | 2 | • To eliminate the excavation cost. |
| 10. | 2 | • To change the title “CAPEX” to “Initial” phase.
| | | • To include the initial training cost under labour cost. |
INITIAL PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>• No modification.</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>7.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>8.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>10.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
</tbody>
</table>
Results of Delphi analysis during the Operation Phase.

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>• No modification.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>• Restructure the classification of items under the operation cost.</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>• No modification.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>• Eliminate the chemical cost/ coagulant cost.</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>• No modification.</td>
</tr>
</tbody>
</table>
| 6 | 1 | • Eliminate the laboratory test cost.
• Eliminate the repair cost. |
| 7 | 1 | • Eliminate the repair cost.
• Eliminate the rehabilitation cost. |
| 8 | 1 | • Electricity cost is chosen.
• Cleaning cost is chosen.
• Labor cost is chosen.
• Supervision cost is chosen.
• Service cost is chosen.
• Repair cost is chosen.
• Replacement cost is chosen. |
| 9 | 1 | • Installation of new equipment cost is chosen.
• Rehabilitation cost is chosen.
• Inspection cost is chosen.
• Lubrication cost is chosen.
• Material maintenance cost is chosen. |
<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
</table>
| 10. | 1 | • Electricity cost is chosen.
• Chemical/ coagulant cost is chosen.
• Laboratory cost is chosen.
• Raw water purchase is chosen.
• Waste Disposal cost is chosen.
• Administration cost is chosen.
• Tooling cost is chosen.
• Cleaning cost is chosen.
• Labor cost is chosen.
• Supervision cost is chosen.
• Service cost is chosen.
• Repair cost is chosen.
• Replacement cost is chosen.
• Installation of new equipment cost is chosen.
• Rehabilitation cost is chosen.
• Inspection cost is chosen.
• Lubrication cost is chosen.
• Material maintenance cost is chosen. |
OPERATION PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>• Eliminate utility cost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eliminate raw water purchase cost.</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>• Eliminate the downtime cost.</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>6.</td>
<td>2</td>
<td>• Eliminate the raw water purchase cost</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>• Eliminate the raw water purchase cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Restructure the hierarchy level.</td>
</tr>
<tr>
<td>8.</td>
<td>2</td>
<td>• Restructure the hierarchy level.</td>
</tr>
<tr>
<td>9.</td>
<td>2</td>
<td>• Eliminate the chemical cost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eliminate the raw water purchase cost</td>
</tr>
<tr>
<td>10.</td>
<td>2</td>
<td>• Restructure the hierarchy level.</td>
</tr>
</tbody>
</table>

OPERATION PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>7.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
</tbody>
</table>
OPERATION PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
</tbody>
</table>

OPERATION PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>10.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
</tbody>
</table>
Result of Delphi Method Analysis on the Maintenance and Repair Phase.

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>- To subdivide and add more items under preventive maintenance (suggested referring the maintenance task/schedule from water operators).</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>- No modification.</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>- To subdivide and add more items under preventive maintenance (suggested referring the maintenance task/schedule from water operators).</td>
</tr>
</tbody>
</table>
| 4. | 1 | - Labour cost is chosen.
- Supervision cost is chosen.
- Overhaul cost is chosen.
- Spare part cost is chosen.
- Material maintenance cost is chosen.
- To add more items under preventive maintenance and corrective maintenance (suggested referring the maintenance task/schedule from water operators). |
| 5. | 1 | - Add items to labour cost. |
| 6. | 1 | - Labor cost is chosen.
- Supervision cost is chosen.
- Overhaul cost is chosen.
- Spare part cost is chosen.
- Material maintenance cost is chosen. |
MAINTENANCE AND REPAIR PHASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
</table>
| 7. | 1 | • Labour cost is chosen.
 | | • Supervision cost is chosen.
 | | • Overhaul cost is chosen.
 | | • Spare part cost is chosen.
 | | • Material maintenance cost is chosen. |
| 8. | 1 | • Labour cost is chosen.
 | | • Supervision cost is chosen.
 | | • Overhaul cost is chosen.
 | | • Spare part cost is chosen.
 | | • Material maintenance cost is chosen. |
| 9. | 1 | • Labour cost is chosen.
 | | • Supervision cost is chosen.
 | | • Overhaul cost is chosen.
 | | • Spare part cost is chosen.
 | | • Material maintenance cost is chosen.
 | | • Administration cost is chosen.
 | | • Training cost is chosen; |
| 10. | 1 | • Add more items under preventive maintenance and corrective maintenance. |
MAINTENANCE AND REPAIR PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>• Eliminate the utility cost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To subdivide the items under energy cost.</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
<tr>
<td>6.</td>
<td>2</td>
<td>• To add the training cost under the items of Labour cost.</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>• To add the training cost under the item of labour cost.</td>
</tr>
<tr>
<td>8.</td>
<td>2</td>
<td>• To add the training cost under the items of labour cost.</td>
</tr>
<tr>
<td>9.</td>
<td>2</td>
<td>• Eliminate the cleaning cost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Eliminate the lubrication cost under the items of preventive maintenance cost.</td>
</tr>
<tr>
<td>10.</td>
<td>2</td>
<td>• No modification.</td>
</tr>
</tbody>
</table>

MAINTENANCE AND REPAIR PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>7.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>8.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>• No Modification.</td>
</tr>
</tbody>
</table>
MAINTENANCE AND REPAIR PHASE

<table>
<thead>
<tr>
<th>Respondents ID</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
<tr>
<td>10.</td>
<td>4</td>
<td>• Verification of Hierarchy level.</td>
</tr>
</tbody>
</table>
Result of Delphi Method Analysis during the Disposal and Upgrading Phase.

DISPOSAL AND UPGRAADING PHASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>● No modification.</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>● Refurbishment cost is chosen.</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>● Upgrade cost is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Disposal cost is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Refurbishment cost is chosen.</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>● Upgrade cost is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Refurbishment cost is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Disposal cost is chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Adding upgrading parts under the items of upgrading cost.</td>
</tr>
</tbody>
</table>

DISPOSAL AND UPGRAADING PHASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>4.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>6.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>8.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>9.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
<tr>
<td>10.</td>
<td>2</td>
<td>● No modification.</td>
</tr>
</tbody>
</table>
DISPOSAL AND UPGRADING PHASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>4.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>5.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>6.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>7.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>8.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>9.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
<tr>
<td>10.</td>
<td>3</td>
<td>No Modification.</td>
</tr>
</tbody>
</table>

DISPOSAL AND UPGRADING PHASE

<table>
<thead>
<tr>
<th>No.</th>
<th>Round of Delphi</th>
<th>Main Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>2.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>3.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>4.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>5.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>6.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>7.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>8.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
<tr>
<td>10.</td>
<td>4</td>
<td>Verification of Hierarchy level.</td>
</tr>
</tbody>
</table>