SUSTAINABLE DESIGN AT TRANSITION RIGID PILED EMBANKMENT WITH SURCHARGED VERTICAL DRAIN OVER SOFT GROUND

PUSPANATHAN A/L SUBRAMANIAM

UNIVERSITI TEKNOLOGI MALAYSIA
SUSTAINABLE DESIGN AT TRANSITION RIGID PILED EMBANKMENT WITH SURCHARGED VERTICAL DRAIN OVER SOFT GROUND

PUSPANATHAN A/L SUBRAMANIAM

A dissertation submitted in partial fulfillment of the requirements for the award of the degree of Doctor of Engineering (Technology and Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2018
To my beloved parents and wife
ACKNOWLEDGEMENT

First of all, I would like to express my sincere appreciation to my academic supervisors, Prof. Ir. Dr. Hj. Ramli bin Nazir and my industry supervisor, Dato’ Ir. Dr. Gue See Sew for their encouragement, guidance and advices. They have contributed towards my understanding and thoughts. Without their continue support and interest, this dissertation would not have been the same as presented here.

My sincere appreciation also extends to all my friends who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

Last but not least, I indebted my gratitude to all my family members especially to my wife who involved indirectly in completing this research.

Thank you.
ABSTRACT

The repair of undulating road involves enormous time and high cost for repetitive remedial works over the time. Intolerable differential settlement is the main cause of the undulating roads. Differential settlement frequently occurs at the intersection of different ground pressure, ground condition, ground treatment and foundation system such as surcharged prefabricated vertical drain (SPVD) and rigid piled embankment which shall be arrested to overcome the undulating road problem. In this research, the intersection of SPVD at transition of rigid piled embankment is introduced to regulate post construction differential settlement between the two conventional ground treatments. This dissertation presents analytical, numerical and field studies of a sustainable design for high and long filled embankment over soft clay at structure approach. Generally, soil settlement is computed based on equivalent raft method and settlement equation proposed by Terzaghi and Boussinesq. Prefabricated vertical drain is designed based on method proposed by Janbu. Whilst, numerical design was modelled in PLAXIS 2012 using soft soil creep (SSC) model with embedded pile row and improved vertical hydraulic permeability, k_v. Instrumented full scale field study was also performed to validate the performance of the proposed system where settlement gauges and settlement markers were installed to monitor the ground surface settlement. Sustainability of the proposed ground treatment approach is quantified in terms of differential settlement, cost and time of construction in comparison to Malaysia industry’s conventional ground treatments. The proposed intersection ground treatment reduces post construction total settlement by about 80% to 95% of the total settlement as compared to conventional transition piled embankment. Meanwhile differential settlement is controlled within the limit of 1:500 throughout the filled embankment. The cost of construction and maintenance works is about 20% lower than conventional piled embankment. The construction time of the proposed system is about 20% to 30% faster than the conventional piled embankment systems. Hence, the proposed system is a sustainable system in term of performance, cost and time of construction.
ABSTRAK

Kerja membaik pulih jalan beralun selalunya melibatkan kos yang tinggi dan memerlukan jangka masa yang panjang untuk kerja-kerja membaikpulih. Enapan tanah yang tidak sekata merupakan faktor utama yang menyumbang kepada masalah jalan beralun. Enapan tanah yang tidak sekata yang perlu ditangani untuk mengatasi masalah jalan beralun biasanya terjadi di pertemuan antara beban tanah yang berbeza, keadaan tanah, sistem rawatan tanah dan sistem tapak seperti saliran tegak pasang siap dengan surcaj (SPVD) serta tambakan bercerucuk yang tegar. Di dalam kajian ini, SPVD di transisi tambak bercerucuk yang tegar diperkenalkan untuk mengawal perbezaan pengenapan di antara dua sistem rawatan tanah yang berbeza. Disertasi ini membentangkan kajian kelestarian secara analitikal, numerikal dan kajian lapang untuk tambak tinggi serta panjang yang menghampiri struktur tegar di atas tanah liat lembut. Secara umumnya, enapan tanah ditafsir dengan menggunakan kaedah kesamaan rakit serta persamaan enapan yang diperkenalkan oleh Terzaghi dan Boussinesq. Saliran tegak pasang siap bagi kajian analitikal direkabentuk berdasarkan kaedah yang diperkenalkan oleh Janbu. Sementara itu, kajian rekabentuk numerikal dimodel dalam perisian PLAXIS 2012 menggunakan model rayapan tanah lembut (SSC) dengan model barisan cerucuk terbenam dan kaedah ketelapan hidraulik tegak yang diperbaiki, k_{w}. Kajian lapang berskala penuh juga dilakukan untuk mengesahkan prestasi sistem yang dicadangkan di mana tolok pengenapan dan penanda pengenapan dipasang untuk memantau pengenapan permukaan tanah. Kemampuan sistem rawatan tanah yang dicadangkan dikuantifikasikan dengan membandingkan pelbagai sistem rawatan tanah konvensional di dalam industri Malaysia dari segi prestasi pengenapan, kos dan masa pembinaan. Sistem rawatan tanah perantaraan yang dicadangkan dapat mengurangkan jumlah enapan pasca pembinaan di antara 80% hingga 95% berbanding sistem konvensional transisi tambakan bercerucuk yang tegar. Sementara itu, perbezaan enapan pula dapat dikawal dalam had 1:500 sepanjang tambak tanah. Kos pembinaan dan membaik pulih juga dikurangkan sebanyak 20% berbanding sistem konvensional tambakan bercerucuk yang tegar. Masa pembinaan juga dapat dipercepatkan sebanyak 20% hingga 30% berbanding sistem konvensional tambakan bercerucuk yang tegar. Oleh itu, sistem yang dicadangkan merupakan satu sistem yang mampam dari segi prestasi, kos and masa pembinaan.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statements 4
1.3 Objectives 6
1.4 Scope of Study 6
1.5 Research Framework 7

2 LITERATURE REVIEW 9

2.1 Introduction 9
2.2 Soft Clay 10
2.3 Ground Improvement on Soft Ground 11
3 RESEARCH METHODOLOGY

3.1 Introduction 71

3.2 Site 71
4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Soil Parameters

4.3 Piled Embankment Design Results

4.4 Prefabricated Vertical Drain Design Results
4.5 Analytical Design
 4.5.1 Analytical Design for Case 1
 4.5.2 Analytical Design for Case 2
 4.5.3 Analytical Design for Case 3

4.6 Numerical Analysis Results
 4.6.1 Results of Numerical Analysis for Case 1
 4.6.2 Results of Numerical Analysis for Case 1
 4.6.3 Results of Numerical Analysis for Case 3

4.7 Field Results
 4.7.1 Settlement Gauge Field Results
 4.7.2 Settlement Marker Field Results
 4.7.3 Field Settlement Profile

4.8 Comparison of Settlement for Cases according to methods
 4.8.1 Analytical and Numerical Assessment
 4.8.1.1 Case 1
 4.8.1.2 Case 2
 4.8.1.3 Case 3
 4.8.2 Analytical and Field Assessment
 4.8.3 Numerical and Field Assessment

4.9 Differential Settlement Results
 4.9.1 Analytical Design Cases
 4.9.2 Numerical Design Cases
 4.9.3 Field Results

4.10 Construction Cost Results
4.11 Construction Time Results
4.12 Sustainability Results

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction
5.2 Conclusions
5.3 Innovation & Benefits
5.3 Recommendation

REFERENCES

Appendices A-K
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Partial safety factor</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of Prefabricated Vertical Drain</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>Discharge Capacity of Prefabricated Vertical Drain</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Properties of Filter Jacket</td>
<td>47</td>
</tr>
<tr>
<td>2.5</td>
<td>Limiting Angular Distortion for Various Structures</td>
<td>62</td>
</tr>
<tr>
<td>2.6</td>
<td>Time Factor as Function of Consolidation Percentage</td>
<td>66</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of Research Gaps addressed in this research</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Prefabricated Vertical Drain Dimension and Parameter</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Soil Parameters for Settlement Analysis</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Stages of Construction in PLAXIS for Case 1</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Stages of Construction in PLAXIS for Case 2</td>
<td>94</td>
</tr>
<tr>
<td>3.5</td>
<td>Stages of Construction in PLAXIS for Case 3</td>
<td>96</td>
</tr>
<tr>
<td>3.6</td>
<td>Material and Product for Construction for Full Scale Model</td>
<td>97</td>
</tr>
<tr>
<td>3.7</td>
<td>Full Scale Model Configuration and Stages of Construction</td>
<td>97</td>
</tr>
<tr>
<td>3.8</td>
<td>Installed Instrumentation at Full Scale Study Embankment</td>
<td>106</td>
</tr>
<tr>
<td>3.9</td>
<td>Typical Construction Time</td>
<td>109</td>
</tr>
<tr>
<td>4.1</td>
<td>General Soil Properties And Compressibility Parameters</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Embankment Net Fill Height</td>
<td>119</td>
</tr>
<tr>
<td>4.2</td>
<td>Pile Embankment Design Corresponding to Embankment Height</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>Geotechnical and Structural Capacity</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Distribution of Road in Malaysia</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Quaternary Sediments in Peninsular Malaysia</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Undulating Road at Structure Approach</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Recommended procedure of selecting an appropriate Solution</td>
<td>12</td>
</tr>
<tr>
<td>2.2a</td>
<td>Summary of Ground Improvement</td>
<td>15</td>
</tr>
<tr>
<td>2.2b</td>
<td>Summary of Ground Improvement</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Maintenance Cost and Differential Settlement</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic Arrangement of Hybrid Pile</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Road Depression</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Road Diagonal Crack</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Total Periodic Maintenance Works from 2005 to 2007</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Percentage of Periodic Maintenance of Federal Roads in Term of Length from 2005 to 2007</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Incurred cost for Periodic Maintenance Activities from 2005 to 2007</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Section through a piled embankment and general layout of reinforcement</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Design approaches (a) Catenary Theory (b) Beam Theory</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Pile Supported Embankment (a) on End Bearing Piles (b) on Floating Piles</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Typical Rigid Slab Piled Embankment</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>Pile Group Settlement with respective to Pile Spacing and Pile Length</td>
<td>33</td>
</tr>
<tr>
<td>2.15</td>
<td>The Skin Friction Distribution in Pile</td>
<td>34</td>
</tr>
</tbody>
</table>
2.16 Load transfer to soil from pile groups 36
2.17 Equivalent Pier Method 38
2.18 Pile Embankment with transition pile 40
2.19 Details of Bridge Approach Support Pile 41
2.20 Column approach (CA) by cement column 42
2.21 Methodology for Column Approach (CA) by Cement Column 42
2.22 Conventional Theory of Radial Consolidation 45
2.23 Assessment of Equivalent Diameter of Band Shaped Vertical Drain 46
2.24 Conversion of Axisymmetric Radial Flow to Plain Strain Flow 50
2.25 Principle for Evaluating Creep Model 53
2.26 Inverse Creep Strain Rate 55
2.27 Idealized Stress-Strain Curve from Oedometer Test With Division of Strain Increment into an Elastic and a Creep Component 56
2.28 Differential Settlement 62
2.29 Ground Settlement Marker 64
2.30 Rod Settlement Gauge 65
2.31 Graphical Method of Asaoka Plot 67
2.32 Graphical Method of Hyperbolic Plot 67
3.1 Site Location Plan 72
3.2 Geological Map of Selangor, Sheet 93, 1975 73
3.3 Road Alignment 74
3.4 Road Profile 74
3.5 SI Layout Plan 76
3.6 Installation pattern of PVD 81
3.7 Profile of Case 1 Ground Treatment Approach 85
3.8 Profile of Case 2 Ground Treatment Approach 86
3.9 Profile of Case 3 Ground Treatment Approach 87
3.10 Schematic Diagram for Settlement Analysis for Intersection of PVD and Transition Pile Embankment 88
3.11 Typical Analytical Design Steps for Intersection of PVD and Transition Pile Embankment 89
4.8 Settlement Profile of Numerical Design for Case 3 during Ground Treatment Period

4.9 Asaoka Plot for Settlement Gauge SG1

4.10 Asaoka Plot for Settlement Gauge SG2

4.11 Asaoka Plot for Settlement Gauge SG3

4.12 Asaoka Plot for Settlement Gauge SG4

4.13 Asaoka Plot for Settlement Marker SM1

4.14 Asaoka Plot for Settlement Marker SM2

4.15 Asaoka Plot for Settlement Marker SM3

4.16 Asaoka Plot for Settlement Marker SM4

4.17 Settlement Profile of Field Study for Case 3

4.18 Analytical and Numerical Settlement Profile for Case 1

4.19 Analytical and Numerical Settlement Profile for Case 2

4.20 Analytical and Numerical Settlement Profile for Case 3

4.21 Analytical and Field Settlement Profile for Case 3

4.22 Numerical and Field Settlement Profile for Case 3

4.23 Differential Settlement computed from Analytical Design

4.24 Differential Settlement computed from Numerical Design

4.25 Differential Settlement computed from Field Full Scale Study

4.26 Field Performance after 5 Years

4.27 Construction and Maintenance Cost

4.28 Percentage of Comparison of Construction and Maintenance Cost

4.29 Percentage of Comparison of Construction Time

4.30 Construction Time According to Site Activities

4.31 Sustainability Chart
LIST OF SYMBOLS

\(\mu \) - Micron
\(W_L \) - Liquid Limit
\(W_p \) - Plastic Limit
\(\gamma_m \) - Partial Factor for Material
\(\gamma_{FL} \) - Partial Factor for Fill and Loading
\(\gamma_{F3} \) - Partial Factor for Forces
\(\sigma_s \) - Tension Stress
\(\tau_s \) - Shear Stress
\(d_w \) - Equivalent Diameter of PVD
\(a \) - Width of PVD
\(b \) - Thickness of PVD
\(d_e \) - Diameter of PVD
\(O_{90} \) - Apparent pore size for PVD
\(q_w \) - Discharge Capacity of the Drain
\(k_h \) - Horizontal Permeability in the Undisturbed Zone of PVD
\(k_s \) - Horizontal Permeability in the Smear Zone of PVD
\(q_u \) - Compressive Strength
\(S_u \) - Undrained Shear Strength
\(k_{hp} \) - Coefficient of Horizontal Permeability of Undisturbed Soil
\(\alpha \) - Geometric Conversion Parameter
\(\beta \) - Smear Zone Effects Parameter
\(k'_{hp} \) - Coefficient of Horizontal Permeability of Disturbed Soil
\(s \) - Ratio between Radius of Smear Zone over Radius of Band
\(n \) - Ratio between Radius of Drain over Radius of Band
\(d_s \) - Diameter of Smear Zone
\(b_s \) - Half Width of Smear Zone
\(b_w \) - Half Width of Band
\(U_{vr} \) - Degree of Consolidation
\(U_v \) - Vertical Degree of Consolidation
\(U_r \) - Radial Degree of Consolidation
\(T_h \) - Time Factor
\(l \) - Drainage Length
\(k_{ve} \) - Equivalent Vertical Hydraulic Conductivity
\(k_v \) - Hydraulic Conductivity in the Vertical Direction
\(\varepsilon \) - Soil Strain
\(\varepsilon_c \) - Strain up to End of Consolidation
\(C_B \) - Material constant
\(t_c \) - Time to end of primary consolidation
\(t' \) - Difference between Start and End of Primary Consolidation
\(C_\alpha \) - Modified Material Constant
\(\varepsilon^H \) - Logarithmic Strain
\(V \) - Volume
\(V_0 \) - Initial Volume
\(e \) - Void Ratio
\(e_0 \) - Initial Void Ratio
\(\kappa' \) - Modified swelling index
\(\nu \) - Poisson’s Ratio
\(\mu' \) - Modified Creep Index
\(\lambda' \) - Modified Compression Index
\(\sigma_p \) - Preconsolidation Pressure
\(\psi \) - Dilantacy Angle
\(\phi \) - Friction Angle
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Effective Cohesion</td>
</tr>
<tr>
<td>K_0^{nc}</td>
<td>Stress Ratio in a State of Normal Consolidation</td>
</tr>
<tr>
<td>C_{cs}</td>
<td>Secondary Compression Index</td>
</tr>
<tr>
<td>ρ_i</td>
<td>Immediate Settlement</td>
</tr>
<tr>
<td>E_u</td>
<td>Undrained Young’s Modulus of the subsoil</td>
</tr>
<tr>
<td>l</td>
<td>Influence factor</td>
</tr>
<tr>
<td>dh</td>
<td>Thickness of Soil Layer</td>
</tr>
<tr>
<td>q</td>
<td>Applied Stress / Pressure on the subsoil</td>
</tr>
<tr>
<td>ρ_c</td>
<td>Consolidation Settlement Magnitude</td>
</tr>
<tr>
<td>σ'_w</td>
<td>Initial Vertical Effective Stress</td>
</tr>
<tr>
<td>σ'_v</td>
<td>Final Vertical Effective Stress</td>
</tr>
<tr>
<td>σ'_c</td>
<td>Preconsolidation Pressure / Yield Stress</td>
</tr>
<tr>
<td>H_i</td>
<td>Initial thickness of incremental soil layer, i of n.</td>
</tr>
<tr>
<td>C_C</td>
<td>Compression Index</td>
</tr>
<tr>
<td>C_r/C_s</td>
<td>Recompression Index</td>
</tr>
<tr>
<td>T</td>
<td>Time for secondary consolidation</td>
</tr>
<tr>
<td>β_{max}</td>
<td>Angular Distortion</td>
</tr>
<tr>
<td>c_v</td>
<td>Coefficient of Consolidation</td>
</tr>
<tr>
<td>T_v</td>
<td>Time Factor</td>
</tr>
<tr>
<td>f_s</td>
<td>Shaft Friction Resistance</td>
</tr>
<tr>
<td>f_b</td>
<td>Base Resistance</td>
</tr>
<tr>
<td>A_s</td>
<td>Surface Area of Pile Shaft</td>
</tr>
<tr>
<td>A_b</td>
<td>Surface Area of Pile Base</td>
</tr>
<tr>
<td>FOS_G</td>
<td>Global Factor of Safety against Global Failure</td>
</tr>
<tr>
<td>FOS_{ps}</td>
<td>Partial Factor of Safety for Shaft Frictional Resistance</td>
</tr>
<tr>
<td>FOS_{pb}</td>
<td>Partial Factor of Safety for Base Resistance</td>
</tr>
<tr>
<td>f_{cu}</td>
<td>Characteristic Strength of Concrete</td>
</tr>
</tbody>
</table>
\(F(n) \) - Drain Spacing Factor
\(F(s) \) - Smear Effect
\(F(r) \) - Well Resistance

SPT-N - Standard Penetration Test Blow Count
\(\gamma_{sat} \) - Bulk Unit Weight of Soil
CR - Compression Index Ratio
RR - Recompression Index Ratio
OCR - Overconsolidation Ratio
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Design Calculation of Adopted Pile Capacity</td>
<td>177</td>
</tr>
<tr>
<td>B</td>
<td>Design Calculation of Piled Embankment</td>
<td>179</td>
</tr>
<tr>
<td>C</td>
<td>Design Calculation for Adopted Prefabricated Vertical Drain</td>
<td>186</td>
</tr>
<tr>
<td>D</td>
<td>Loading Distribution for Pile Length and Summary of Settlement</td>
<td>190</td>
</tr>
<tr>
<td>E</td>
<td>Input and Output of Numerical Analysis for Case 1, 2 and 3</td>
<td>193</td>
</tr>
<tr>
<td>F</td>
<td>Summary of the Analytical Settlement for Case 1, 2 and 3</td>
<td>282</td>
</tr>
<tr>
<td>G</td>
<td>Summary of the Numerical Settlement for Case 1, 2 and 3</td>
<td>283</td>
</tr>
<tr>
<td>H</td>
<td>Summary of the Field Settlement for Case 3</td>
<td>284</td>
</tr>
<tr>
<td>I</td>
<td>Quantity Taking Off and Bill of Quantities for All Three Cases</td>
<td>285</td>
</tr>
<tr>
<td>J</td>
<td>Time Estimation All Three Cases</td>
<td>312</td>
</tr>
<tr>
<td>K</td>
<td>Sustainability Assessment in Term of Performance, Cost and Time</td>
<td>313</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Soft clay is commonly found in most of the countries in South East Asia especially in Thailand, Vietnam and Malaysia (Long et al., 2013). Out of total land coverage of 329,758 km2 in Peninsular of Malaysia about 82,144 km is covered by roads and mostly are paved roads as shown in Figure 1.1.

Road embankment development includes roads, ramps and bridges. Based on Figure 1.1 and 1.2, it can be noticed that development on the thick soft clay is not vastly explored unless road access is inevitably required. Road planning and construction are preferred to be carried on stiffer ground instead of the thick soft ground as required extensive ground treatment design and involve high cost of construction. However, lack of land for construction leave no choice for developers to explore the ground underlain by thick soft clay to construct road (Chin, 2005).

Engineers face difficulties in designing road embankment over soft ground. The major difficulty faced by engineers is to control the settlement and differential settlement as soft ground consolidate over time which leads to long term settlement (Mesri & Vardhanabhuti, 2005).
Figure 1.1: Distribution of roads in Peninsular of Malaysia (source: Jabatan Kerja Raya Malaysia, 2009)
Problem gets even more complicated for construction of different road embankment approach such as road at grade and bridge. This is because differential settlements between two road embankment systems which involves two different foundation systems also need to be controlled to avoid or minimize the structures defect. Discounting post construction and differential settlement in the construction of road embankment will lead to undulating and bumpy effects (Figure 1.3) on the road or at
bridge approach which is very dangerous to road users (Gue et al. 2007). Hence, engineers need to impose extra care to eliminate or to reduce these problems.

Figure 1.3: Undulating road at structure approach

However, engineers tend to provide costly and time-consuming ground treatment design approach to eliminate or to reduce the settlement and differential settlement. Worst is that the proposed ground treatment approach may not be effective for long term performance and unnecessary cost and time is required to remedy defected road. Hence, this necessitate an effective system in term of performance, cost and time to be explored to avoid wastage in term of material, cost and time.

1.2 Problem Statements

Bumping effect on road is one of the defects that is very commonly detected at the structure approach of road such as bridge and ramp. Such undulating road condition tends to cause road user to lost control and crashes their vehicles which is very unsafe to the road users. This undulating road also deteriorate vehicles condition where frequent repairing is required due to wear and tear of the vehicle parts.
Conventionally, piled embankment is a ground treatment approach for high embankment fills over soft ground particularly at the structure approach such as bridges and ramps to improve the ground bearing and overcome the large settlement problem. Although large settlement problem could be arrested by introducing piled embankment, bumping effect still occur not at the structure approach but at the piled and unpiled road embankment due to differential settlement problem (Gue et al. 2007).

For very high and long stretched embankments from structure approach, piled embankment approach may not be practical as the involved cost is high and require very long construction time. This problem has been addressed by researches and one of the recommended solution was column approach (CA) by Shen et al. (2007) where transition stone column with reducing length design was adopted to reduce the differential settlement and bumping effects for high embankment fills over soft ground. However, transition stone column which behave as drainage path and also load bearer still undergo long term settlement and may causes undulating road.

Besides researchers also introduced vertical drain, surcharge and transition piled embankment to reduce piled embankment length. This approach able to accelerate settlement during construction at the unpiled road embankment. Settlement at untreated transition piled may occur throughout the service period (Shen et al. 2007) Bumping effect still may occur at the intersection between piled embankment and unpiled road embankment due to different post construction settlement at transition piled embankment and treated ground beyond transition piled embankment area.

Over the years, several approaches have been introduced to arrest post construction settlement and differential settlement of soft ground for high road embankment at structure approach but none of the introduced approach effectively seized the problem where either the design approach is very expensive and time consuming or excessive long-term settlement and differential settlement.
1.3 Objectives

The main purpose of this study is to establish the design of transition piled embankment with intersection of surcharged vertical drain to eliminate bumping effect for high road embankment over soft ground at structure approach. The specific objectives of this study are as follows:

a) To establish practical analytical design of the transition piled embankment with intersection of surcharged vertical drain.
b) To simulate practical numerical transition piled embankment with intersection of surcharged vertical drain.
c) To determine the field performance of the transition piled embankment with intersection of surcharged vertical drain.
d) To assess analytical design, finite element design and instrumented field study performance of the transition piled embankment with intersection of surcharged vertical drain.
e) To establish sustainability of the transition piled embankment with intersection of surcharged vertical drain as compared to conventional design approaches.

1.4 Scope of Study

Scope of study for ground is limited to soft clay with S_u is less than 20kPa. The ground treatment at the intersection of transition piled embankment is specified as surcharge and vertical drain. The surcharge consists of suitable material with unit weight of 20kN/m3 and vertical drain proposed to be adopted is prefabricated vertical drain.

The road embankment scoped in this study is road at grade approaching bridge abutment and the thickness of the embankment fill is about 10m to 20m. This study only covers the rigid piled embankment with transition pile embankment. The pile utilized in this study is 250mm x 250mm square reinforced concrete pile. Piled
embankment is designed based on the guideline and specification of BS5400 and BS8110.

In this study, the sustainability of the proposed system is established based on the performance, cost and time of construction. Performance of the design is evaluated in term of design satisfaction of the yielded differential settlement. Cost and time required for construction for both conventional and alternative approach is based on the typical cost and construction time adopted in Malaysia in year 2015.

Conventional design approaches in this study is scoped to full piled embankment and transition piled embankment without surcharged prefabricated vertical drain.

1.5 Research Framework

The framework of the research to achieve each specific objective listed in section 1.3 is elaborated below: -

i) To establish the analytical design of the transition piled embankment with intersection of surcharged vertical drain.
 - Identify the available methods and to establish suitable method to compute settlement for varies pile length.
 - Identify the available methods and to establish suitable method to design Surcharged Vertical Drain.
 - Establish the differential settlement based on the calculated total settlement.

ii) To simulate numerical transition piled embankment with intersection of surcharged vertical drain.
 - Identify the available soil models and to recognize the suitable soil model to simulate the ground behavior.
 - Identify the available methods to model Piled Embankment and to recognize the suitable method to model Piled Embankment in finite element.
REFERENCES

British Standard Institute, BS5930, 1999. Code of practice for site investigations. Licensed Copy: iclssl203 iclssl203, Imperial College of Science and Technology (JISC), 07 February 2005, Uncontrolled Copy, (c) BSI

British Standard Institute. Structural use of Concrete, BS8110-1988. Code of practice for design and construction. Licensed Copy: iclssl203 iclssl203, Imperial College of Science and Technology (JISC), 07 February 2005, Uncontrolled Copy, (c) BSI

Buisman, K., (1936). “Results of long duration settlement tests”. Proceedings 1st
International Conference on Soil Mechanics and Foundation Engineering,
Geotechnique 29:469-480.
Carrillo, N., (1942). “Simple two and three-dimensional cases in the theory of
drain improved subsoil under embankment loading.” Soils Found., 35(4), 49–
61.
Field Tests on Pile-supported Embankments over Soft Ground”. 2009 US-
China Workshop on Ground Improvement Technologies. Advances in Ground
Improvement. ASCE.
Embankment on Soft Soil”. Advances in Earth Structures: Reseach to Practice
(GSP 151) ASCE.
Geotechnical Engineering, (May), 1–15.
Géotechnique 46, No. 2, 313-328.
of Technology, Kanpur, Uttar Pradesh, India
FHWA NHI-06-019 and FHWA NHI-06-020, US Dept. of Transportation,
Federal Highway Administration.
Fox L., (1948). “The mean elastic settlement of a uniformly loaded area at a depth
below the ground surface”. Proc. 2nd Int. Conf. Soil Mech. And Found. Eng.,
Vol. 1, 129.

