STRUCTURAL, MAGNETIC AND DIELECTRIC PROPERTIES OF NICKEL-MAGNESIUM SUBSTITUTED COBALT FERRITES NANOPARTICLES AND CORE-SHELL NANOCOMPOSITES

RIZUAN BIN MOHD ROSNAN

UNIVERSITI TEKNOLOGI MALAYSIA
STRUCTURAL, MAGNETIC AND DIELECTRIC PROPERTIES OF NICKEL-MAGNESIUM SUBSTITUTED COBALT FERRITES NANOPARTICLES AND CORE-SHELL NANOCOMPOSITES

RIZUAN BIN MOHD ROSNAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2017
Special dedications to my beloved wife, parents and my supportive supervisors…
Thanks for the love and memories
ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent, the Most Merciful. Thankful to Allah for His blessing and gracing that leads my thesis successfully completed.

The author would like to express deepest gratitude to Prof. Dr. Zulkafli Bin Othaman for his guidance, supports, grants and helps in many respects throughout past years. The author deeply impressed by his everlasting passion and conscientious attitude to the research, which are invaluable to author and should treasure forever. Sincere appreciation should be extended to Prof. Dr. Rosli Bin Hussin for his precious guidance in the field of electron spin resonance. His profound knowledge and expertise deeply impressed the author and has been benefitting so much.

In addition, the author wishes to thank the following people; first and foremost his lovely wife, Farrah A. Rahim for her enthusiastic support. His parents, Mohd Rosnan Busri, Siti Aisah Lani, Sharifah Thalhon Sy Abu Bakar, Allahyarham A. Rahim Daud and all family members for their love and who shared with author their experiences of life and kept things in perspective.

Sincere appreciation should be dedicated to all fellow colleagues in the research group, Dr. Ali A. Ati, Dr. Shadab Dabagh, Dr. Samad Zare, Dr. Ali Reza Samavati who have been providing friendly helps and supports throughout years. Special thanks to some lecturers and colleagues especially Dr. Mohammad Firdaus Omar, Mohd Asmu’i Mohd Akil, Leaw Wai Loon, Dr. Che Rozid, Zahidfullah, Dr. Ros, Dr. Mohammad Hafizuddin (UKM) and laboratory officers in the Department of Physics and Ibnu Sina Institute for Scientific and Industrial Research for their helps and encouragements rendered to author from time to time.
ABSTRACT

Cobalt ferrite has gained great scientist interest because of its important applications in various fields of science and technology. However, the magnetic character of the particles used for many applications depends crucially on the size, shape and purity of these nanoparticles. Hence the need for developing fabrication processes that are relatively simple and yield controlled particle sizes is desired. This work involves the study of structural, magnetic, dielectric properties and morphology of Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$ ferrite nanoparticles ($x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5$), which are synthesized by chemical co-precipitation method. In addition, the core-shell nanocomposites of Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$/Polyaniline were successfully synthesized via chemical polymerization method. The ferrite samples were then sintered at selected temperatures of 700 °C, 800 °C, 900 °C and 1000°C for 8 hours. X-ray powder diffraction indicated that the core material is having a single phase of spinel cubic structure. The crystallite size of Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$ nanoparticles was found in the range of 25–40 nm. The infrared spectra of the synthesized samples displayed two absorption bands characteristic of the spinel ferrites at 585–595 cm$^{-1}$ and 390–400 cm$^{-1}$, which correspond to vibrations of tetrahedral and octahedral bonds, respectively. The Field Emission Scanning Electron Microscope and Transmission Electron Microscope images of ferrite nanoparticles show different aggregations at different sintering temperatures and concentrations. The combination of both Ni-, Mg- substituted cobalt ferrites showed that the substitution of Mg$^{2+}$ ions for Fe made more pronounced effects on magnetic and dielectric properties at room temperature. The values of saturation magnetization (M_s) and coercivity (H_c) are enhanced by increasing of Mg concentration up to $x = 0.1$. By increasing Mg$^{2+}$ substitution, the M_s and H_c increase from 57.35 emu/g ($x = 0.0$) to 61.49 emu/g ($x = 0.1$) and 603.26 Oe ($x = 0.0$) to 684.11 Oe ($x = 0.1$), respectively. In contrast, the M_s decreases from a maximum value 12.00 emu/g ($x = 0.1$) to a minimum value 5.39 emu/g ($x = 0.4$) when ferrites are encapsulated with Polyaniline. However, the H_c increases from a maximum value 766.94 Oe ($x = 0.1$) to a minimum value 646.17 Oe ($x = 0.0$). At 1 kHz, dielectric constant ε' shows a maximum value at 86.22 for $x = 0.1$ and minimum value at 56.67 for $x = 0.3$. In addition, the dielectric loss ε'' shows a maximum value of 10.98 for $x = 0.2$ and minimum value of 9.45 for $x = 0.0$. For nanocomposites, ε' reaches a maximum value of 68.32 ($x = 0.1$) and minimum value of 46.73 ($x = 0.3$) at 1 kHz. In addition, ε'' shows a maximum value of 49.42 ($x = 0.2$) and a minimum value of 36.33 ($x = 0.3$).
Ferit kobalt telah menarik minat yang tinggi para saintis disebabkan kepentin aplikasinya dalam pelbagai bidang sains dan teknologi. Namun begitu, sifat magnet partikel tersebut sangat bergantung terhadap saiz, bentuk dan kandungan ketulenan bahan partikel nano tersebut. Justeru, keperluan di dalam menghasilkan proses fabrikasi yang lebih baik dan mudah serta kebolehupayaan mengawal saiz partikel nano yang terhasil sangat diperlukan. Penyelidikan ini melibatkan kajian terhadap struktur, magnet, sifat dielektrik dan morfologi bagi Co_{0.5}Ni_{0.5-x}Mg_{x}Fe_{2}O_{4} partikel nano ferit (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5), di mana ia telah disintesis melalui kaedah pemendakan kimia. Tambahan lagi, komposit nano rangka-teras Co_{0.5}Ni_{0.5-x}Mg_{x}Fe_{2}O_{4}/Polianalina telah berjaya disintesis melalui kaedah pempolimeran kimia. Sampel ferit yang terhasil telah disinter pada suhu 700 °C, 800 °C, 900 °C dan 1000°C selama 8 jam. Pembelauan sinar-X serbuk ferit menunjukkan bahawa bahan ferit tersebut adalah spinel berfasa tunggal dan berbentuk kubik. Saiz kristal bagi partikel nano Co_{0.5}Ni_{0.5-x}Mg_{x}Fe_{2}O_{4} telah diperolehi dalam julat 25-40 nm. Spektrum infra merah bagi sampel disentesis menunjukkan dua jalur serapan pencirian ferit spinel pada 585–595 cm^{-1} dan 390–400 cm^{-1}, masing-masing merujuk kepada getaran ikatan tetrahedral dan oktahedral. Imej mikroskop elektron pengimbas pancaran medan dan mikroskop elektron transmisi bagi partikel nano menunjukkan perbezaan agregat pada suhu pensinteran dan konsentrasi yang berbeza. Gabungan antara Ni-, Mg- sebagai pengganti dalam ferit kobalt menunjukkan bahawa penggantian ion Mg^{2+} bagi Fe memberi kesan dan perubahan yang ketara terhadap sifat magnet dan dielektrik pada suhu bilik. Nilai pemagnetan tepuan (M_s) dan daya koersif (H_c) meningkat dengan penambahan konsentrasi Mg sehingga x = 0.1. Dengan peningkatan penggantian Mg^{2+}, M_s dan H_c masing-masing menunjukkan peningkatan daripada 57.35 emu/g (x = 0.0) kepada 61.49 emu/g (x = 0.1) dan daripada 603.26 Oe (x = 0.0) kepada 684.11 Oe (x = 0.1). Sebaliknya, M_s menyusut daripada nilai maksimum 12.00 emu/g (x = 0.1) kepada nilai minimum 5.39 emu/g (x = 0.4) apabila Polianalina ditambah ke atas ferit. Namun, H_c didapati meningkat daripada nilai maksimum 766.94 Oe (x = 0.1) kepada nilai minimum 646.17 Oe (x = 0.0). Pada 1 kHz, pemalar dielektrik ε' menunjukkan nilai maksimum 86.22 bagi x = 0.1 dan nilai minimum 56.67 bagi x = 0.3. Sebagai tambahan, kehilangan dielektrik ε'' menunjukkan nilai maksimum 10.98 bagi x = 0.2 dan nilai minimum 9.45 bagi x = 0.0. Bagi komposit nano, ε' mencapai nilai maksimum 68.32 (x = 0.1) dan nilai minimum 46.73 (x = 0.3) pada 1 kHz. Tambahan pula, ε'' menunjukkan nilai maksimum 49.42 (x = 0.2) dan nilai minimum 36.33 (x = 0.3).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research background 1
1.2 Problem statement 3
1.3 Objectives of research 4
1.4 Scope of research 5
1.5 Significant of research 5
1.6 Organization of the research 6
LITERATURE REVIEW

2.1 Background of ferrites

- **2.1.1** Spinel ferrites
- **2.1.2** Chemical composition of spinel ferrites
- **2.1.3** Crystal structure of spinel cubic ferrites
- **2.1.4** Cobalt ferrites
- **2.1.5** Nickel ferrites
- **2.1.6** Magnesium ferrites

2.2 Conductive polymer: Polyaniline

- **2.2.1** Polyaniline and their properties
- **2.2.2** Advantages and application of polyaniline

2.3 Fundamental of magnetism

- **2.3.1** Classification of magnetic materials
- **2.3.2** Hard and Ferrites
- **2.3.3** Magnetic domain
- **2.3.4** Magnetic anisotropies of spinel ferrites
- **2.3.5** Magnetic hysteresis
- **2.3.6** Magnetic Interactions
 - **2.3.6.1** Jump Relaxation Model
 - **2.3.6.2** Super Exchange Interaction, Magnetostatic Field Interaction

2.4 Growth mechanism of ferrites and their composites

- **2.4.1** Co-precipitation method
- **2.4.2** Polymerization method
- **2.4.3** Formation of core-shell ferrite
- **2.4.4** Agglomeration and aggregation

2.5 Thermal effect on ferrites properties

2.6 Particles size and magnetic properties for cobalt ferrites and their substitutions

2.7 Synthesis and characterization of cobalt ferrites

2.8 Synthesis and characterization of core-shell ferrites/polyaniline nanocomposites

2.9 Characterization Method

- **2.9.1** X-Ray diffractometer (XRD)
2.9.2 Fourier transform infrared spectroscopy (FTIR) 52
2.9.3 Field emission scanning electron microscopy (FESEM) 54
2.9.4 Transmission electron microscopy (TEM) 55
2.9.5 Vibrating sample magnetometer (VSM) 56
2.9.6 Electron spin resonance (ESR) 60
2.9.7 Two probe of impedance analyzer 63

3 METHODOLOGY 65
3.1 Materials 65
3.2 Preparation of sample 67
 3.2.1 Chemical formulation 67
 3.2.2 Preparation of Co-Ni-Mg ferrite nanoparticles 69
 3.2.3 Synthesis of core-shell Co-Ni-Mg Fe₂O₄/PANI nanocomposites 70
 3.2.4 Preparation of Samples 73

4 RESULTS AND DISCUSSION 74
4.1 Structural properties 74
 4.1.1 Sample for Co, Ni, and Mg ferrites 74
 4.1.2 Sample for Co₀.₅Ni₀.₅-MgₓFe₂O₄ (0.0 ≤ x ≤ 0.5) sintered at 900°C 76
 4.1.3 Cation distribution 81
 4.1.4 Samples for Co₀.₅Ni₀.₅-MgₓFe₂O₄ (0.0 ≤ x ≤ 0.5) sintered at 700, 800 and 1000°C 87
 4.1.5 Comparison of ferrites composition sintered at 700 to 1000 °C 90
 4.1.5.1 Sample for Co₀.₅Ni₀.₄Mg₀.₁Fe₂O₄ sintered at 700-1000 °C 90
 4.1.5.2 Sample for Co₀.₅Ni₀.₅Fe₂O₄ sintered
4.1.5.3 Sample for $\text{Co}_{0.5}\text{Mg}_{0.5}\text{Fe}_2\text{O}_4$ sintered at 700-1000 °C

4.1.6 Sample for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4/\text{PANI}$ $(0.0 \leq x \leq 0.5)$

4.2 Morphological

4.2.1 FE-SEM observation

4.2.2 Particles size distribution by effect of Ni-Mg substitution

4.2.3 FESEM for Co-Ni-Mg ferrite ($x=0.1$) sintered at 700-1000 °C

4.2.4 Particles size distribution

4.2.5 FESEM for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4/\text{PANI}$ nanocomposites

4.2.6 TEM for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4/\text{PANI}$ nanocomposites

4.3 Magnetic properties

4.3.1 Sample for Co, Ni and Mg ferrites

4.3.2 Sample for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ $(0.0 \leq x \leq 0.5)$ sintered at 900 °C

4.3.3 Magnetic measurements for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ $(0.0 \leq x \leq 0.5)$ sintered at 700, 800 and 1000 °C

4.3.4 Comparison of ferrites composition sintered at 700 to 1000 °C

4.3.4.1 Sample for Co-Ni-Mg ferrite ($x=0.1$) sintered at 700-1000 °C

4.3.4.2 Sample for Co-Ni ferrite ($x=0.0$) sintered at 700-1000 °C

4.3.4.3 Sample for Co-Mg ferrite ($x=0.5$) sintered at 700-1000 °C

4.3.5 Sample for pure PANI and ferrite/PANI nanocomposites

4.3.6 Sample for $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4/\text{PANI}$ $(0.0 \leq x \leq 0.5)$
4.4 Dielectric properties 148
4.4.1 Dielectric measurement in frequency 148
between 100 Hz to 5 MHz
4.4.2 Dielectric measurement in frequency 153
between 200 MHz to 20 GHz
4.4.3 Sample for Co_{0.5}Ni_{0.5-x}Mg_xFe_2O_4/PANI 154
(0.0 \leq x \leq 0.5)

5 CONCLUSION AND FUTURE OUTLOOK 158
5.1 Introduction 158
5.2 Conclusion of findings 159
5.3 Recommendation and future outlook 162

REFERENCES 163
Appendices A-B 180-186
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Chemicals and apparatus required for the synthesis of the Co-Ni-Mg ferrites using co-precipitation method</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical formula of $\text{Co}{0.5}\text{Ni}{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ ferrites</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical formula of $\text{Co}{0.5}\text{Ni}{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$/PANI composites</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>The mass of chemicals for each sample formulation</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition, structural and morphological data of $\text{Co}{0.5}\text{Ni}{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ ferrites</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Cation distributions, lattice parameters a_{exp} and a_{th}, cation radius at (A) and [B] sites, r_{A} and r_{B}, of $\text{Co}{0.5}\text{Ni}{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ ferrites</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>The values of the crystallite size D (nm), lattice spacing d, lattice parameter a (Å), volume V (Å), X-ray density ρ_x, tetrahedron v_1 (cm$^{-1}$) and octahedron v_2 (cm$^{-1}$) for $\text{Co}{0.5}\text{Ni}{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ ($x = 0.0, 0.1$ and 0.5)</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>FT-IR spectra of tetra v_1 and octa, v_2 (cm$^{-1}$), crystallite size D_m (nm), d-spacing, cell parameter a (Å), unit cell volume V (Å), x-ray density d_x (g/cm3), bulk density d_B (g/cm3), Porosity P (%) and surface area S (m2/g)</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>Target compositions of a series of Ni-Mg substituted cobalt ferrite samples, and the final compositions (atomic abundance %) determined by energy-dispersive X-ray spectroscopy (EDX) within the FESEM</td>
<td>105</td>
</tr>
</tbody>
</table>
4.6 Magnetic parameters of the Ni-Mg substituted cobalt ferrite samples after sintering at 900°C

4.7 Comparison of magnetic properties of Co$_x$Ni$_{1-x}$Fe$_2$O$_4$ and Co$_x$Mg$_{1-x}$Fe$_2$O$_4$ with $x = 0.0$ and 0.5

4.8 ESR analysis of as-synthesized Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$ (0.0 ≤ x ≤ 0.5) samples

4.9 Magnetic parameters at room temperature - coercivity H_c (Oe), remanent magnetization M_r (emu/g), saturation magnetization M_s (emu/g), squareness ratio M_r/M_s, magnetic moment and magnetocrystalline anisotropy K (erg/Gauss)

4.10 ESR parameters for the different sintering temperature Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$ for composition $x = 0.0$, 0.1 and 0.5 samples. Magnetic resonance field H_r (G), peak line width ΔH_{pp} (G), g value and relaxation time τ^2 (s)

4.11 Magnetic parameters at room temperature for Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$ (in bracket) and Co$_{0.5}$Ni$_{0.5-x}$Mg$_x$Fe$_2$O$_4$/PANI (0.0 ≤ x ≤ 0.5), CoFe$_2$O$_4$ and pure PANI

4.12 ESR characteristics of PANI, CoNiMg ferrite/PANI nanocomposites, and Co-, Ni- and Mg-ferrite/PANI nanocomposites at room temperature
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Crystal structure of cubic ferrites</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic drawings for PANI showing the ring torsions referenced to the average molecular plane (a) and both, (b) base and (c) salt forms</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>A periodic table showing the type of magnetic behavior of each element at room temperature</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic representation of orientations of dipole moments in (a) paramagnetic, (b) ferromagnetic, (c) antiferromagnetic and (d) ferrimagnetic materials</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>(a) Schematic depiction of domains in ferromagnetic or ferromagnetic material, (b) The gradual change in magnetic dipole orientation across a domain wall</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>A typical hysteresis loop for a ferro- or ferri- magnetic material</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Initiation step of the synthesis of polyethylene</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Propagation step of the synthesis of polyethylene</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Termination step of the synthesis of polyethylene</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>The representative structure of organic materials functionalized magnetic iron oxide nanoparticles</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Scattering of x-rays by a crystallite of simple cubic structure</td>
<td>51</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic of a Michelson interferometer</td>
<td>53</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>FESEM JOEL JSM-6701F – Ibnu Sina Institute for Scientific & Industrial Research, UTM</td>
<td>54</td>
</tr>
<tr>
<td>2.14</td>
<td>Compact-Digital TEM Hitachi HT7700 - Hi-Tech Instruments Sdn. Bhd</td>
<td>55</td>
</tr>
<tr>
<td>2.15</td>
<td>The schematic of interactions between beam electrons and specimen. (1) electron beam, (2) transmitted electron, (3) backscattered electron, (4) characteristic x-rays, (5) secondary electron, (6) Auger electron, (7) Absorbed current, (8) cathodeluminescence</td>
<td>56</td>
</tr>
<tr>
<td>2.16</td>
<td>VSM, Lake Shore model 7404 – Makmal Magnet Pusat Pengajian Fizik Gunaan, UKM</td>
<td>57</td>
</tr>
<tr>
<td>2.17</td>
<td>Simplified form of vibrating-sample magnetometer: (1) loudspeaker transducer, (2) conical paper cup support, (3) drinking straw, (4) reference sample, (5) sample, (6) reference coils, (7) sample coils, (8) magnet poles, (9) metal container</td>
<td>58</td>
</tr>
<tr>
<td>2.18</td>
<td>JEOL X-band ESR spectrometer (Model JES-FA100) – Ibnu Sina Institute for Scientific & Industrial Research, UTM</td>
<td>61</td>
</tr>
<tr>
<td>2.19</td>
<td>(a) Absorption band (b) first derivative of the absorption band of (a)</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Change in sintering temperature of Co-Ni-Mg ferrite samples</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>The polymerization procedures for Co-Ni-Mg Fe<sub>2</sub>O<sub>4</sub>/PANI core-shell nanocomposites</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>A process flow of ferrite and core-shell nanocomposites preparation and their characterization</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>The XRD patterns show single phase of CoFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub> and MgFe<sub>2</sub>O<sub>4</sub> ferrites synthesized by co-precipitation method followed by sintering at 900 °C</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>FT-IR spectra of CoFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub> and MgFe<sub>2</sub>O<sub>4</sub> ferrites sintered at 900°C</td>
<td>76</td>
</tr>
<tr>
<td>4.3</td>
<td>The XRD patterns of Co<sub>0.5</sub>Ni<sub>0.5-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> ferrites (0.0 ≤ x ≤ 0.5) synthesized by co-precipitation method followed by sintering at 900 °C</td>
<td>77</td>
</tr>
</tbody>
</table>
4.4 The peaks for (311) for Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ ferrites.

4.5 Variation of crystallite size with Mg concentration.

4.6 FT-IR spectra of Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ ferrites (0.0 ≤ x ≤ 0.5) sintered at 900°C.

4.7 Variation of lattice parameters, a_{th} and a_{exp} with Mg content (x) in the Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ ferrites system.

4.8 XRD patterns of Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ (0.0 ≤ x ≤ 0.5) ferrite powder sintered at (a) 700 °C, (b) 800 °C and (c) 1000°C.

4.9 FTIR spectra of Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ (0.0 ≤ x ≤ 0.5) sintered at (a) 700 °C, (b) 800°C and (c) at 1000°C.

4.10 XRD patterns of Co_{0.5}Ni_{0.4}Mg_{0.1}Fe₂O₄ (x = 0.1) sintered at 700 to 1000°C.

4.11 FTIR spectra of Co_{0.5}Ni_{0.4}Mg_{0.1}Fe₂O₄ (x = 0.1) sintered at 700 to 1000°C.

4.12 XRD patterns of Co_{0.5}Ni_{0.5}Fe₂O₄ sintered at 700 to 1000 °C.

4.13 FTIR spectra of Co_{0.5}Ni_{0.5}Fe₂O₄ sintered at 700 to 1000 °C.

4.14 XRD patterns of Co_{0.5}Mg_{0.5}Fe₂O₄ sintered at 700 to 1000 °C.

4.15 FTIR spectra of Co_{0.5}Mg_{0.5}Fe₂O₄ sintered at 700 to 1000 °C.

4.16 X-ray powder diffraction pattern for PANI, Co_{0.3}Ni_{0.7}Mg_{0.1}Fe₂O₄ nanoparticle and Co_{0.3}Ni_{0.7}Mg_{0.1}Fe₂O₄/PANI nanocomposites samples.

4.17 X-ray powder diffraction pattern for Co_{0.3}Ni_{0.5}Mg_xFe₂O₄/PANI (0.0 ≤ x ≤ 0.5) samples.

4.18 The shifting of (311) peak for the X-ray powder diffraction pattern for Co_{0.5}Ni_{0.5}Mg_xFe₂O₄ and Co_{0.3}Ni_{0.5}Mg_xFe₂O₄/PANI (0.0 ≤ x ≤ 0.5) samples.

4.19 FT-IR spectra of Co_{0.5}Ni_{0.5}Mg_xFe₂O₄/PANI (0.0 ≤ x ≤ 0.5) nanocomposites.
4.20 FE-SEM images of Co_{0.5}Ni<sub>0.5</sub-x,Mg_xFe₂O₄ ferrites of
(a) x = 0.0, (b) x = 0.1, (c) x = 0.2, (d) x = 0.3, (e) x = 0.4
and (f) x = 0.5 sintered at 900 °C

4.21 EDX pattern of Co_{0.5}Ni_{0.5}-x,Mg_xFe₂O₄ ferrites with different
composition of Mg substitutions

4.22 FESEM micrographs (magnification 75k×) for
Co_{0.5}Ni_{0.5}-x,Mg_xFe₂O₄ ferrites with different
composition of Mg substitutions

4.23 The size distributions of Co_{0.5}Ni_{0.4}Mg_{0.1}Fe₂O₄ ferrite
sintered at: (a) 700 °C, (b) 800 °C, (c) 900 °C and (d) 1000 °C

4.24 Typical FESEM images of (a) pure Co_{0.5}Ni_{0.5}Fe₂O₄
nanoparticles, (b) pure PANI prepared by polymerization
(c) nanoflakes-like Co_{0.5}Ni_{0.5}Fe₂O₄/PANI nanocomposites
and (d) Co_{0.5}Ni_{0.2}Mg_{0.3}Fe₂O₄/PANI nanocomposites

4.25 FESEM images of (a-b) Co_{0.5}Ni_{0.2}Mg_{0.3}Fe₂O₄/PANI
nanocomposites that shows of ferrite particles embedded
in PANI matrix (in red circle)

4.26 (a-b) TEM images of Co_{0.5}Ni_{0.5}Fe₂O₄/PANI nanocomposites
showing the ferrite particles embedded in PANI matrix

4.27 Typical hysteresis loops of CoFe₂O₄, NiFe₂O₄ and
MgFe₂O₄ ferrites sintered at 900 °C

4.28 ESR patterns of CoFe₂O₄, NiFe₂O₄ and MgFe₂O₄ ferrites
sintered at 900°C

4.29 Typical hysteresis loops of Co_{0.5}Ni_{0.5}-x,Mg_xFe₂O₄
(0.0 ≤ x ≤ 0.5) ferrites sintered at 900 °C

4.30 Variation of coercivity, saturation magnetization and
remanance of Co_{0.5}Ni_{0.5}-x,Mg_xFe₂O₄ (0.0 ≤ x ≤ 0.5) ferrites

4.31 The ESR measurements of Ni²⁺ and Mg²⁺ doped CoFe₂O₄
nanoparticles with Mg concentration (0.0 ≤ x ≤ 0.5) for the
samples sintered at 900 °C

4.32 ESR pattern for (a) CoFe₂O₄, (b) MgFe₂O₄, (c) NiFe₂O₄
and (d) Co_{0.5}Ni_{0.4}Mg_{0.1}Fe₂O₄ ferrites sintered at 900°C
4.33 Magnetization curves of $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$
$(0.0 \leq x \leq 0.5)$ ferrite samples sintered at (a) 700 °C,
(b) 800 °C and (c) 1000°C

4.34 Room temperature ESR spectra of $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$
for $(x = 0.0, 0.1$ and $0.5)$ ferrite powder sintered at (a) 700 °C,
(b) 800 °C and (c) 1000 °C

4.35 Fitting of the M-H curve for different sintering temperature
for $\text{Co}_{0.5}\text{Ni}_{0.4}\text{Mg}_{0.1}\text{Fe}_2\text{O}_4$ ferrite nanopowders

4.36 ESR spectra of $\text{Co}_{0.5}\text{Ni}_{0.4}\text{Mg}_{0.1}\text{Fe}_2\text{O}_4$ samples dried at
200 °C and sintered at 700, 800, 900 and 1000 °C

4.37 Fitting of the M-H curve for different sintering temperature
of $\text{Co}_{0.5}\text{Ni}_{0.5}\text{Fe}_2\text{O}_4$ ferrite nanopowders

4.38 ESR spectra of $\text{Co}_{0.5}\text{Ni}_{0.5}\text{Fe}_2\text{O}_4$ samples dried at 200 °C
and sintered at 700, 800, 900 and 1000 °C

4.39 Fitting of the M-H curve for different sintering temperature
of $\text{Co}_{0.5}\text{Mg}_{0.5}\text{Fe}_2\text{O}_4$ ferrite nanopowders

4.40 ESR spectra of $\text{Co}_{0.5}\text{Mg}_{0.5}\text{Fe}_2\text{O}_4$ samples dried at 200 °C
and sintered at 700, 800, 900 and 1000 °C

4.41 Hysteresis loops of (a) pure PANI (inset),
(b) $\text{CoNi}_{0.4}\text{Mg}_{0.1}\text{Fe}_2\text{O}_4$ (red) and
(c) $\text{CoNi}_{0.4}\text{Mg}_{0.1}\text{Fe}_2\text{O}_4$/PANI (blue)

4.42 ESR spectra for the PANI and Co-, Ni-, Mg- ferrite/PANI
composites obtained at room temperature

4.43 Magnetic hysteresis loops at room temperature of
$\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$/PANI $(0.0 \leq x \leq 0.5)$

4.44 (a) Variation of coercivity H_c and (b) Variation of
magnetization M_s at room temperature for
$\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ and $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$/PANI
$(0.0 \leq x \leq 0.5)$

4.45 ESR spectra of $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$/PANI $(0.0 \leq x \leq 0.5)$
samples

4.46 Variation of complex dielectric constant, (ε')-real and
dielectric loss (ε'')-imaginary of $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$
$(0.0 \leq x \leq 0.5)$ samples as a function of frequency
4.47 Variation of tangent loss (tan \(\delta \)) and AC conductivity (\(\sigma_{ac} \)) of Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\) (0.0 \(\leq x \leq 0.5 \)) samples as a function of frequency

4.48 Variation in Cole-Cole plots with frequency for Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\) (0.0 \(\leq x \leq 0.5 \)).

4.49 Variation of complex dielectric constant, (\(\varepsilon^' \)) and dielectric loss (\(\varepsilon^'' \)) of Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\) (0.0 \(\leq x \leq 0.5 \)) samples as a function of frequency

4.50 Variation of tangent loss (tan \(\delta \)) and ac conductivity (\(\sigma_{ac} \)) of Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\) (0.0 \(\leq x \leq 0.5 \)) samples as a function of frequency

4.51 Variation of complex (a) dielectric constant (\(\varepsilon^' \)) and (b) dielectric loss (\(\varepsilon^'' \)) of Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\)/PANI (0.0 \(\leq x \leq 0.5 \)) samples as a function of frequency

4.52 Variation of (a) tangent loss (\(\delta \)) and (b) logf ac conductivity (\(\sigma \)) of Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\)/PANI (0.0 \(\leq x \leq 0.5 \)) samples as a function of frequency

4.53 Variation in Cole-Cole plots with frequency for Co\(_{0.5}\)Ni\(_{0.5-x}\)Mg\(_x\)Fe\(_2\)O\(_4\)/PANI (0.0 \(\leq x \leq 0.5 \)).
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Argentum</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>a-PANI</td>
<td>Amorphous Polyaniline</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>Au</td>
<td>Aurum</td>
</tr>
<tr>
<td>Bi</td>
<td>Bismuth</td>
</tr>
<tr>
<td>c-PANI</td>
<td>Crystalline Polyaniline</td>
</tr>
<tr>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyl Trimethylammonium Bromide</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DBSA</td>
<td>Dodecyl Benzene Sulfonic Acid</td>
</tr>
<tr>
<td>DCTATPR</td>
<td>Direct Current Transferred Arc Thermal Plasma Reactor</td>
</tr>
<tr>
<td>EB</td>
<td>Emeraldine Base</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>ES</td>
<td>Emeraldine Salt</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron Spin Resonance</td>
</tr>
<tr>
<td>EXAFS</td>
<td>X-Ray Absorption Fine Structure</td>
</tr>
<tr>
<td>FCC</td>
<td>Face-centered Cubic</td>
</tr>
<tr>
<td>Fe</td>
<td>Ferrum (iron)</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>IL</td>
<td>Ionic liquid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LEDs</td>
<td>Light emitting diodes</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>MnO</td>
<td>Manganese Oxide</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>PANI</td>
<td>Polyaniline</td>
</tr>
<tr>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>SC</td>
<td>specific capacitance</td>
</tr>
<tr>
<td>SCS</td>
<td>solution combustion synthesis</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>VSM</td>
<td>Vibrating Sample Magnetometer</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffractometer</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>[BMIM]Br</td>
<td>1-Butyl-3-Methyl-Imidazolium Bromide</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{ac}</td>
<td>AC conductivity</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>ω</td>
<td>applied frequency</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro’s number</td>
</tr>
<tr>
<td>θ</td>
<td>Bragg angle</td>
</tr>
<tr>
<td>C_0</td>
<td>capacitance of the condenser with the region of space (without vacuum)</td>
</tr>
<tr>
<td>C</td>
<td>capacitance of the condenser when the space is filled with dielectric medium</td>
</tr>
<tr>
<td>q</td>
<td>charged of an electron</td>
</tr>
<tr>
<td>V_{cell}</td>
<td>cell volume</td>
</tr>
<tr>
<td>H_c</td>
<td>coercivity</td>
</tr>
<tr>
<td>α_1</td>
<td>cosines of the angles between M_s and the x axes</td>
</tr>
<tr>
<td>T_c</td>
<td>crystalline temperature</td>
</tr>
<tr>
<td>D</td>
<td>diameter of crystallite</td>
</tr>
<tr>
<td>ΔE</td>
<td>different of energy</td>
</tr>
<tr>
<td>dI</td>
<td>distance between centers of two charges</td>
</tr>
<tr>
<td>ρ_B</td>
<td>density of bulk</td>
</tr>
<tr>
<td>ρ_x</td>
<td>density of x-ray</td>
</tr>
<tr>
<td>μ</td>
<td>electronic dipole moment</td>
</tr>
<tr>
<td>K_1</td>
<td>first order of cubic anisotropy constants</td>
</tr>
<tr>
<td>R^*</td>
<td>free radical</td>
</tr>
<tr>
<td>v</td>
<td>frequency of radiation</td>
</tr>
<tr>
<td>g</td>
<td>g-factor</td>
</tr>
<tr>
<td>D</td>
<td>grain size</td>
</tr>
<tr>
<td>δ</td>
<td>inversion parameter</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>(a)</td>
<td>lattice constant</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Bohr magneton</td>
</tr>
<tr>
<td>(\beta)</td>
<td>line broadening at half the maximum intensity (FWHM)</td>
</tr>
<tr>
<td>(\Delta H_{pp})</td>
<td>peak-to-peak line width (in (G))</td>
</tr>
<tr>
<td>(\Delta H_{1/2})</td>
<td>line width (in (G)) at half-height of the absorption peak</td>
</tr>
<tr>
<td>(M)</td>
<td>magnetization</td>
</tr>
<tr>
<td>(B)</td>
<td>magnetic field strength</td>
</tr>
<tr>
<td>(n_B)</td>
<td>magnetic moment</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>magnetic permeability of free space</td>
</tr>
<tr>
<td>(K)</td>
<td>magnetocrystalline anisotropy</td>
</tr>
<tr>
<td>(M_w)</td>
<td>molecular mass or molecular weight</td>
</tr>
<tr>
<td>(M)</td>
<td>monomer</td>
</tr>
<tr>
<td>(Z)</td>
<td>number of formula units in a unit cell</td>
</tr>
<tr>
<td>(N_2)</td>
<td>octahedral cluster</td>
</tr>
<tr>
<td>(h)</td>
<td>Planck constant</td>
</tr>
<tr>
<td>(\varepsilon')</td>
<td>permittivity real</td>
</tr>
<tr>
<td>(\varepsilon'')</td>
<td>permittivity imaginary</td>
</tr>
<tr>
<td>(\mu'')</td>
<td>permeability imaginary part</td>
</tr>
<tr>
<td>(\mu')</td>
<td>permeability real part</td>
</tr>
<tr>
<td>(P)</td>
<td>porosity</td>
</tr>
<tr>
<td>(\varepsilon_r)</td>
<td>relative permittivity</td>
</tr>
<tr>
<td>(\tau^2)</td>
<td>relaxation time</td>
</tr>
<tr>
<td>(M_r)</td>
<td>remanence</td>
</tr>
<tr>
<td>(M_s)</td>
<td>saturation magnetization</td>
</tr>
<tr>
<td>(m_S)</td>
<td>saturation moment</td>
</tr>
<tr>
<td>(K)</td>
<td>shape factor</td>
</tr>
<tr>
<td>(K_1)</td>
<td>second order of cubic anisotropy constants</td>
</tr>
<tr>
<td>(S)</td>
<td>specific surface</td>
</tr>
<tr>
<td>(v_1)</td>
<td>tetrahedral cluster</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>volume fraction</td>
</tr>
<tr>
<td>(d_x)</td>
<td>X-ray density</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>X-ray wavelength</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Process step of synthesis of ferrite nanoparticles by co-precipitation method</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>Process step of filtration, grinding and sintering samples at desire temperatures</td>
<td>181</td>
</tr>
<tr>
<td>3</td>
<td>Process step of synthesis of ferrite/polyaniline nanocomposites by polymerization method</td>
<td>182</td>
</tr>
<tr>
<td>4</td>
<td>Calculation example of chemical mass</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>Calculation example of lattice constant</td>
<td>184</td>
</tr>
<tr>
<td>6</td>
<td>Publications and Conference proceedings</td>
<td>186</td>
</tr>
</tbody>
</table>
1.1 Background of Research

In recent years, the synthesis and characterization of ferrites and their modifications have attracted more attention due to their remarkable electrical, magnetic and magneto-electric properties, which are interesting for scientific and technological applications. Ceramic-like ferromagnetic materials have been considered as highly important electronic materials for more than half a century. According to Still, a Magnetite (Fe$_2$O$_4$) which is known as a natural genuine ferrite has been recognized more than two millennium years ago by ancient people due to its magnetism and was used as a mariner’s compass in China [1]. Nanoscale ferrites are likely to become an integral part of the future nanotechnology primarily as their electrical, permittivity and magnetic elements [2]. The properties of ferrites are dependent on size, shape, distribution of particles and chemical composition, which are in turn influenced by the synthesis technique.

Among ferrites, cobalt ferrites, CoFe$_2$O$_4$ are the most widely used magnetic materials for having low cost and high performance in high frequency applications. CoFe$_2$O$_4$ with inverse spinel structure is well known for having a relatively large magnetic anisotropy, moderate saturation magnetization, remarkable chemical
stability, and mechanical hardness [3]. These properties, along with their great physical and chemical stability, make CoFe$_2$O$_4$ nanoparticles suitable for potential applications in electromechanical transducers, biomedicine and magnetic data storage systems. However, the magnetic character of the particles used for many applications depends crucially on the size, shape and purity of these nanoparticles [4]. Hence the need for developing fabrication processes that are relatively simple and yield controlled particle sizes is desired. Several, popular methods including co-precipitation, thermal decomposition and/or reduction, micelle synthesis, hydrothermal synthesis, and laser pyrolysis techniques can all be directed at the synthesis of high-quality magnetic nanoparticles [5].

Concurrently, nanocomposite materials combining an electrically conducting polymer and magnetic nanoparticles also have been intensively investigated due to their fascinating application such as electrochemical display devices [6], molecular electronics [7], sensors [8], electrical-magnetic interference (EMI) shields [9][10], and microwave absorption materials[11]. On top of this, the synthesis of magnetic particle/polyaniline nanocomposites not only achieves a combination of their properties, but also overcomes the shortcomings in the preparation of inorganic nanomaterials, according to reports related to their preparation and properties [12]. Among the conducting polymers, polyaniline, (PANI) has received a great deal of attention due to its unique electro-physico-chemical behavior, environmental properties and relatively easy synthesis.

In this work, nickel-magnesium substituted cobalt ferrite Co-Ni-Mg Fe$_2$O$_4$ and their substituted ferrite/polyaniline nanocomposites (Co-Ni-Mg-Fe$_2$O$_4$/PANI) have been successfully synthesized. Co-Ni-Mg-Fe$_2$O$_4$ is the magnetic core, and PANI is the conducting shell to become core-shell structure. The Co-Ni-Mg-Fe$_2$O$_4$ nanoparticles were prepared by co-precipitation method and the Co-Ni-Mg-Fe$_2$O$_4$/PANI composites were synthesized via polymerization method. The structural, morphological, magnetic and dielectric properties were investigated in details through X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron
Microscope (TEM), Vibration Sample Magnetometer (VSM), Electron Spin Resonance (ESR) and Two Probe of Impedance Analyzer.

1.2 Problem Statement

A potential of Co ferrites has extensively been explored for highly important applications in various fields of science and technology. Their structural, morphology, magnetic and electrical properties would be the main indicators as functional magnetic materials as for specific applications. These properties of ferrite are very much sensitive to technique adopted for the synthesis, preparative parameters, initial ingredients and heat treatment. Magnetic properties of ferrites can be suitably tailored by varying the composition of cations. Due to the above parameters, there may be a change in cations distribution, which may result in the unexpected magnetic, electrical and dielectric properties. This means that by changing the type of the magnetic ions as well as by selective substitution of non-magnetic atoms on the tetrahedral (A) and octahedral (B) sites, will lead to interesting spin configurations.

Note that, there are several studies focusing on the effect of other co-substituted ferrites. The influence of magnetic ion substitution such as Mn$^{2+}$ [13] and Gd$^{3+}$ [14] on various structural, magnetic, electric and dielectric properties of CoFe$_2$O$_4$ have been reported in the literature. Nevertheless, several researchers have reported on non-magnetic ions such as Al$^{3+}$ [15], Y$^{3+}$ [16], Zn$^{2+}$ [17], Cu$^{2+}$ [18] or Cd$^{2+}$ [19] substituting CoFe$_2$O$_4$. Magnesium ions with non-magnetic nature are known for achieving control over magnetic parameters in developing technologically important materials and they have strong B sites preference.

It was observed that when the non-magnetic divalent cations such as Zn, Mg, are substituted for magnetic cations such as Ni, Co, Mn, the saturation magnetization
(Mₐ) increase up to 50% substitution, beyond which these values decrease. In addition, Mg²⁺ ions causes appreciable changes in the structural and electrical properties of the ferrites [20] [21]. Thus, the substitution of magnetic Ni²⁺ and non-magnetic Mg²⁺ ions on Co ferrite will markedly modify the magnetic properties. The aim of this work is to study the structural properties of Co₀.₅Ni₀.₅₋ₓMgₓFe₂O₄, 0.0 ≤ x ≤ 0.5 in step of 0.1 as a function of Ni and Mg contents and to define their correlation with morphology, magnetic and dielectric properties. Since Ni-Mg substituted Co ferrite nanoparticles in series 0.0 ≤ x ≤ 0.5 is a new contributor in family of mixed ferrites, it would be considered as pioneer to combine this material into conductive polyaniline matrix to develop a core-shell structure of nanocomposites. The structure of core-shell for nanocomposites is categorized as versatile by combining the electrical and magnetic properties, where this is also has a plenty rooms need to be explained and explored.

1.3 Objectives of Research

The main objectives of this research are:

1. To synthesize single-phase Co₀.₅Ni₀.₅₋ₓMgₓFe₂O₄ (0.0 ≤ x ≤ 0.5) in step of 0.1 powdered materials by co-precipitation method.

2. To determine the influence of Ni²⁺ and Mg²⁺ concentration on the structural, particle size, magnetic and dielectric properties of the Co₀.₅Ni₀.₅₋ₓMgₓFe₂O₄ ferrites material at 900 °C.

3. To determine the influence of sintering temperature on the structural, particle size and magnetic properties of Co₀.₅Ni₀.₅₋ₓMgₓFe₂O₄ ferrites material.

4. To determine the influence of polyaniline embedded on the magnetic and dielectric properties of Co₀.₅Ni₀.₅₋ₓMgₓFe₂O₄ ferrites material.
1.4 Scope of Research

In this work, ferrite nanoparticles phase of $\text{Co}_{0.5}\text{Ni}_{0.5-x}\text{Mg}_x\text{Fe}_2\text{O}_4$ with $x = 0.0, 0.1, 0.2, 0.3, 0.4$ and 0.5 were synthesized using co-precipitation method. The synthesis of the core-shell ferrite/PANI nanocomposites using polymerization method. The stoichiometric molar amounts of $\text{Ni(NO}_3\text{)}_2\cdot6\text{H}_2\text{O}$, $\text{Mg(NO}_3\text{)}_2\cdot6\text{H}_2\text{O}$, $\text{Co(CH}_3\text{COO)}_2\cdot4\text{H}_2\text{O}$ and $\text{Fe(NO}_3\text{)}_3\cdot9\text{H}_2\text{O}$ were introduced. The ferrites samples were sintered at selected sintering temperatures of either $700\,^\circ\text{C}$, $800\,^\circ\text{C}$, $900\,^\circ\text{C}$ and $1000\,^\circ\text{C}$ for 8 hours. Determination of structural properties and morphology of ferrite nanoparticles and nanocomposites have been performed by using XRD, FTIR, FESEM and TEM. Determination of magnetic properties of ferrite nanoparticles and nanocomposites were performed by using ESR and VSM. Determination of dielectric properties of ferrite nanoparticles and nanocomposites were performed by two-probe method using impedance analyzer.

1.5 Significant of Research

The combination of Co, Ni and Mg to be ferrite nanoparticles with specific formula and in the form of ferrite/PANI nanocomposites are novel. Our aim is to merge the advantages of both Co and Ni ferrites (ferromagnetic behavior) and to utilize from the existence of Mg (paramagnetic behavior) in small constant ratio to ensure the large magnetization of the ferrites. It is unexpected that the addition of Mg improves the magnetization by high saturation magnetization, higher dielectric properties and low loss over a wide range of frequency. The properties of Co ferrites are remarkable such as high coercivity, moderate saturation magnetization, strong anisotropy along with good mechanical hardness and chemical stability. On the other hand, Ni ferrites possess high resistivity and permeability at high frequencies. The chosen methods of co-precipitation and polymerization are economical. The simple, repeatable, homogeneous and environmental friendly preparation may contribute
towards the controlled growth of high quality ferrite nanopowders, potentially as candidates for memory storage media and microwave devices.

1.6 Organization of the Research

This thesis is divided into seven chapters as follow:

Chapter One provides a brief introduction of the research undertaken. This includes the research background and overview, problem statement, objectives, scope of research, significant of research and organization of the research.

Chapter Two provides a comprehensive review of background related to this topic and current knowledge on spinel cobalt ferrite and their chemical composition. It covers fundamental of magnetism, growth mechanism of cobalt ferrites and their composites, including the formation of core-shell ferrite/polyaniline nanocomposites. This includes some theoretical aspects involved and uses in this project.

The experimental work employed in this study is described in details in Chapter Three. It includes the chemical used, formulation and preparation of Ni-Mg substituted cobalt ferrites and core-shell formation of ferrites/polyaniline nanocomposites samples. The structural, morphology, magnetic and dielectric properties determination using XRD, FTIR, FESEM, TEM, VSM, ESR and impedance analyzer are also described in detail in this chapter.

The experimental results and finding of the research are presented in Chapter Four. It includes the characterization of ferrite samples in term of different ratio of Ni and Mg substitution, different sintering temperature and the formation of core-shell structure on $\text{Co}_{0.5}\text{Ni}_{0.4}\text{Mg}_{0.1}\text{Fe}_2\text{O}_4$ polyaniline nanocomposites. This chapter is
REFERENCES

1. Still, A. The Soul of Lodestone; The Background of Magnetical Science. N.Y.: Murray Hill Book, Inc. 1946

9. Della Pina, C. Ferretti, A. M. Ponti, A. and Falletta, E. A Green Approach To
164

Magnetically-Hard Electrically-Conducting Polyaniline/CoFe$_2$O$_4$

67. Pramanik, N. C. Fuji, T. Nakanishi, M. and Takada, J. Preparation And

78. Tanriverdi, E. E. Uzumcu, A. T. Kavas, H. Demir, A. and Baykal, A. Conductivity Study Of Polyaniline-Cobalt Ferrite (PANI-CoFe$_2$O$_4$)

88. Hosseini, S. H. and Asadnia, A. Polyaniline / Fe$_3$O$_4$ Coated On MnFe$_2$O$_4$ Nanocomposite : Preparation, Characterization, And Applications In...

126. Kumar, A. Sharma, P. and Varshney, D. Structural, Vibrational And Dielectric Study Of Ni Doped Spinel Co Ferrites: Co\(_{1-x}\)Ni\(_x\)Fe\(_2\)O\(_4\) (x=0.0, 0.5, 1.0). *Ceram. Int.*, 2014. 40(8): 12855–12860.

156. Mathew, D. S. and Juang, R. S. An Overview Of The Structure And

168. Noginova, N. Arthur, E. Weaver, T. Loutts, G. B. Atsarkin, V. A. and Gotovtsev, D. G. NMR And Spin Relaxation In LaGA$_{1-x}$Mn$_x$O$_3$ - Evidence for

176. Mohamed, M. B. and EL-Sayed, K. Structural, Magnetic And Dielectric Properties of PANI- Ni$_{0.5}$Zn$_{0.5}$Fe$_{1.5}$Cr$_{0.5}$O$_4$ Nanocomposite. *Compos. Part B*, 2014. 56: 270–278.
