SYNTHESIS AND CHARACTERIZATION OF SPIONS-BROMELAIN-FOLIC ACID ON FOLIC ACID RECEPTOR POSITIVE CANCER MODEL

ROZITA NASIRI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioprocess Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

JUNE 2016
Dedicated to

My ever-supportive Mama (Ashraf Razavi), Papa (Sohrab Nasiri), my sisters, my brothers and my colleague (Javad Hamzehalipour Almaki).

Specially dedicated to my beloved mother (Ashraf Razavi) and sisters (Setareh and Mahtab) who are everything in my life.

Thank you for being the best thing that ever happened in my life.

Love you all by very fabric of my being.
ACKNOWLEDGEMENT

I would like to express my sincere and utmost gratitude to my main supervisor Prof. Dr. Ani Binti Idris for her supervision, guidance and great support throughout the duration that I undertook to complete this project successfully. My sincere appreciation also extends to my co-supervisor Prof. Dr. Fadzilah Adibah Bin Abdul Majid for her kindness and guidance throughout the entire research. Last but not least, I would like to express my utmost appreciation to my lovely family who have given me all that I have. Indeed they are the best in my life.
ABSTRACT

Engineering of a physiologically compatible, stable and targetable delivery vehicle superparamagnetic iron oxide nanoparticles-Bromelain-folic acid (SPIONs-Br-FA) was reported. Initially, the synthesized bare SPIONs were coated with citric acid (CA) in order to increase biocompatibility, stability and solubility of the SPIONs. Moreover, through CA coating, carboxyl functional groups for further reactions were produced. Br (as an anti-cancer agent) and FA (as a targeting agent to the folic acid receptor positive (FAR+) cancer cells) were conjugated to the synthesized nanocarrier through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride/ N-hydroxysuccinimide (EDC/NHS) click chemistry. Subsequently, characterization and physico-chemical analyses were carried out through methods such as Fourier transform infrared spectroscopy, atomic absorption spectroscopy (AAS), dynamic light scattering, vibrating sample magnetometer, x-ray diffraction, transmission electron microscopy (TEM) and field emission scanning electron microscopy. The in vitro tetrazolium dye (MTT) assay and blood compatibility tests were performed to confirm the biocompatibility of the engineered nano delivery system. High level of SPIONs-FA binding to FAR+ cell lines (HeLa, MDA-MB-231 and 4 T1) compared to folic acid receptor negative (FAR-) cell lines (HSF 1184 and MDA-MB-468) was assured via qualitative and quantitative in vitro binding studies (Prussian blue assay and AAS analysis). The reason may be higher transport of SPIONs-FA through the mechanism of receptor endocytosis pathway into FAR+ cells in comparison with the mechanism of passive diffusion of SPIONs into the FAR- cells. Cytotoxicity studies carried out in human cell lines (HSF 1184, MDA-MB-468, MDA-MB-231 and HeLa) and mouse breast cancer cells (4 T1) showed significant dose advantage with SPIONs-Br-FA in reducing the half maximal inhibitory concentration (IC50) values compared with neat Br. Through morphological observation studies by inverted microscope and acridine orange/ethidium bromide fluorescent staining method, it was disclosed that the cells had undergone apoptosis since the shrinkage as well as the apoptotic bodies were obviously seen. The results showed that SPIONs-Br-FA was a rewarding candidate to suppress the migration of the FAR+ cancer cells as well as to inhibit colony formation of the FAR+ cancer cells compared to neat Br. The percentage of apoptotic cells (apoptotic index) with more condensed and fragmented chromatin increased sharply in SPIONs-Br-FA treated cells compared to the neat Br. Overall, the SPIONs-Br-FA induced higher percentage of apoptotic cells than the neat Br. Moreover, after treatment protocol performance on 4 T1 tumor bearing mice, the qualitative and quantitative biodistribution study were carried out in vital organs and tumor using colorimetric method (AAS) and TEM method which indicate significant tumor targetability of SPIONs-FA. Finally, the tumor volume and inhibition growth rate were measured in 4 T1 tumor bearing mice treated with different SPIONs formulations to investigate the effectiveness of SPIONs-Br-FA. Administration of SPIONs-Br-FA through tail vein (three times a week) during the four-week treatment period reduced the tumor burden of tumor bearing mice and also increased their life-span when compared with SPIONs-Br and neat Br at same concentration of bromelain. In conclusion, the current results indicated the dual-functional synthesized SPIONs-Br-FA is a promising tool in the field of biomedicine, chiefly cancer therapy.
ABSTRAK

Kejuruteraan yang serasi secara fisiologi, stabil dan boleh menyasarkan sarana pemasukan partikel nano ferum oksida super paramagnet-Bromelain-asid folik (SPIONs-Br-FA) telah dilaporkan. SPIONs telah disaluti dengan asid sitrik (CA) untuk meningkatkan bioserasian, kestabilan dan keterlarutan SPIONs tersebut. Selain itu, melalui penyalaan CA, kumpulan-kumpulan karboksil berfungsi untuk tindak balas lanjutan telah dihasilkan. Br (sebagai agen anti-kanser) dan FA (sebagai agen penyasaran terhadap sel-sel kanser positif reseptor asid folik (FAR+)) telah dikenal pasti melalui kajian in vitro kualitatif dan kuantitatif (asai biru Prusia dan analisis AAS). Ini mungkin disebabkan oleh pengangkutan yang lebih tinggi SPIONs-FA menerusi mekanisme tapak jalan endositosis reseptor ke dalam sel-sel FAR+ berbanding dengan mekanisme peresapan pasif SPIONs ke dalam sel-sel FAR-.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Research</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Significance of Study</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis Organization</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Overview on Cancer</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Barriers to Conventional Cancer Treatment</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Nanotechnology</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Tumor Vasculature</td>
<td>23</td>
</tr>
</tbody>
</table>
2.6 Enhanced Permeability and Retention (EPR) effect
2.7 Nano Delivery System
 2.7.1 Types of Nano Delivery System
2.8 Magnetic Nano platforms as Drug Carriers
 2.8.1 Superparamagnetic Nanoparticles (SPIONs) as Drug Carriers
2.9 Characterization of SPIONs in Drug Delivery Applications
2.10 Biocompatibility Evaluation of SPIONs
2.11 Bromelain (Br)
2.12 Cell Death, Apoptosis and Necrosis
2.13 Concepts of Passive and Active Targeting
2.14 Receptor Mediated Cell Uptake
2.15 Active Targeting by Folic Acid (FA)

3 RESEARCH METHODOLOGY
 3.1 Introduction
 3.2 Materials
 3.3 Experimental Design
 3.4 Initial Ferrofluids (γ-Fe$_2$O$_3$) Synthesis
 3.5 Citrate Coating of SPIONs
 3.6 Bromelain Conjugation
 3.7 Determination of Bromelain Loading Content
 3.8 Folic Acid Conjugation
 3.9 Determination of Folic Acid Loading Content using HPLC
 3.10 Structure Analysis
 3.11 Determination of Hydrodynamic Diameter
 3.12 Iron Concentration of Samples
 3.13 Assessment of Magnetic Properties
 3.14 Crystallinity Structure
 3.15 Assessing the Size of Samples
 3.16 Cell Line
3.17 *In vitro* RBC, WBC and PRP aggregation and Haemolysis Studies

3.18 Coagulation Factors Assay (PT, TT, APTT and FB) and Hard Clotting Test

3.19 Cell Compatibility Study

3.20 Quantitative Binding Study

3.21 Qualitative Binding Study

3.22 Morphological Assessment by Phase Contrast Inverted Microscopy

3.23 Apoptosis Detection by AO/EB Staining

3.24 Scratch Motility Assay

3.25 Clonogenic Inhibition Assay

3.26 Animal Handling and Establish Tumor Bearing Mice

3.27 Quantitative Biodistribution Study in Tumor Bearing Mice

3.28 Qualitative Biodistribution Study in Tumor Bearing Mice

3.29 *In Vivo* Anti-Cancer Efficacy

3.30 Statistics Analysis

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Synthesis and Characterization

4.3 Binding Study

4.4 *In Vitro* Coagulation Factors and Hard Clotting Time Assay

4.5 Anti-Proliferation and Cytotoxicity Assay

4.6 Morphological Assessment by Phase Contrast Inverted Microscopy

4.7 Apoptosis Detection by AO/EB Staining

4.8 Scratch Motility Assay

4.9 Clonogenic Inhibition Assay

4.10 Establish Mice Bearing 4 T1 Tumor Xenografts
5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Suggestions for future work

REFERENCES

Appendices A-C
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>List of nano delivery systems.</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of some of the in vitro and in vivo studies on effects of bromelain on different cell lines and animal models.</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>Examples of targets for different types of cancer.</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>List of materials used in the research.</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>First group of in vivo study.</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Second group of in vivo study.</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Percentage of haemolysis of bare and modified SPIONs at three different concentrations.</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Inhibitory effect (IC₅₀ values) of SPIONs in different formulations, neat Br and Cisplatin against cells after 24 h.</td>
<td>89</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Ten most frequent cancers, all residence, Malaysia 2007</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Ten most frequent cancers, female, Malaysia 2007</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Nano drug vs. classic drug distribution in body.</td>
<td>47</td>
</tr>
<tr>
<td>2.1</td>
<td>Difference between normal and cancer cells.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Most common cancer sites worldwide by sex 2012.</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>The side effects of chemotherapy on the body.</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Side effects of surgery, chemotherapy and radiation therapy.</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>The existence of gaps in the cancer cells’ chaotic vasculature architecture allowing the unspecific macromolecules and nanoscale materials transport into tumor tissue.</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>EPR Effect a) in normal cells b) in tumor cells.</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic representation of the steps and mechanisms of apoptosis versus necrosis.</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic diagram of the folate receptor-mediated endocytosis pathway.</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology flowchart. (1) Engineering, (2) Assessment.</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic presentation of SPIONs-Br-FA binding to the FA receptors on the cancer cells and administration of nanoparticles with different formulation into 4 T1 breast tumor-bearing mice leading to inhibition of cancer growth.</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Step by step functionalization of dual-functional SPIONs-Br-FA.</td>
<td>70</td>
</tr>
<tr>
<td>4.3</td>
<td>FT-IR spectra of synthesized and functionalized nanoparticles including (a) bare SPIONs, (b) SPIONs, (c) SPIONs-Br and (d) SPIONs-Br-FA.</td>
<td>71</td>
</tr>
</tbody>
</table>
4.4 The stability characteristics of bare SPIONs, SPIONs, SPIONs-Br and SPIONs-Br-FA in terms of mean hydrodynamic diameter (nm).

4.5 Microscopic observation of the SPIONs-Br-FA, a) in the absence of the magnetic field and b) in the presence of the magnetic field.

4.6 Magnetization curves of synthesized nanoparticles.

4.7 XRD patterns of non-coated and coated SPIONs.

4.8 a) TEM bare SPIONs, b) TEM functionalized SPIONs, c) HRTEM bare SPIONs, d) HRTEM functionalized SPIONs, e) SAED patterns of bare SPIONs, f) intensity histogram of bare SPIONs

4.9 a) FESEM image of bare SPIONs, b) FESEM image of functionalized SPIONs, c) 3D image of bare SPIONs, d) 3D image of functionalized SPIONs, e) Size distribution of bare SPIONs, f) Size distribution of functionalized SPIONs.

4.10 Quantitative binding study.

4.11 Competitive binding assay.

4.12 Prussian blue stained images.

4.13 Blood aggregation studies.

4.14 Coagulation factors assay and hard clotting time test after blood incubation with different concentrations of nanoparticles.

4.15 MTT assay.

4.16 Growth inhibitory effects.

4.17 Detection of apoptosis by AO/EB staining.

4.18 Percentages of live, apoptotic, and necrotic cells at different cell lines treated with neat Br and SPIONs-Br-FA.

4.19 Inhibition of HSF 1184 cell migration after treatment with neat Br and SPIONs-Br-FA.

4.20 Inhibition of MDA-MB-468 cell migration after treatment with neat Br and SPIONs-Br-FA.

4.21 Inhibition of HeLa cell migration after treatment with neat Br and SPIONs-Br-FA.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22</td>
<td>Inhibition of MDA-MB-231 cell migration after treatment with neat Br and SPIONs-Br-FA.</td>
</tr>
<tr>
<td>4.23</td>
<td>Inhibition of 4 T1 cell migration after treatment with neat Br and SPIONs-Br-FA.</td>
</tr>
<tr>
<td>4.24</td>
<td>Quantitative analysis of migration inhibition rate of neat Br and SPIONs-Br-FA.</td>
</tr>
<tr>
<td>4.25</td>
<td>Qualitative analysis of colony forming inhibition potential of neat Br and Br-FA.</td>
</tr>
<tr>
<td>4.26</td>
<td>Quantitative analysis of colony forming inhibition potential.</td>
</tr>
<tr>
<td>4.27</td>
<td>Image of mice bearing 4 T1 breast tumor in situ and a histological slice of tumor.</td>
</tr>
<tr>
<td>4.28</td>
<td>Quantitative biodistribution study.</td>
</tr>
<tr>
<td>4.29</td>
<td>Qualitative biodistribution study (TEM staining) of vital organs.</td>
</tr>
<tr>
<td>4.30</td>
<td>Tumor volume after in vivo treatment (Group 1).</td>
</tr>
<tr>
<td>4.31</td>
<td>Survival rate after in vivo treatment (Group 1).</td>
</tr>
<tr>
<td>4.32</td>
<td>Tumor volume after in vivo treatment (Group 2).</td>
</tr>
<tr>
<td>4.33</td>
<td>Extracted tumor volume after in vivo treatment (Group 2).</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>APTT</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>AR</td>
<td>Androgen receptor</td>
</tr>
<tr>
<td>Br</td>
<td>Bromelain</td>
</tr>
<tr>
<td>CA</td>
<td>Trisodium citrate dihydrate</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic Light Scattering</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EPR</td>
<td>Enhanced permeability and retention</td>
</tr>
<tr>
<td>FA</td>
<td>Folic acid</td>
</tr>
<tr>
<td>FAR</td>
<td>Folic acid receptor</td>
</tr>
<tr>
<td>FAR-</td>
<td>Negative folic acid receptor</td>
</tr>
<tr>
<td>FAR+</td>
<td>Positive folic acid receptor</td>
</tr>
<tr>
<td>FB</td>
<td>Fibrin formation</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>FRα (FAR)</td>
<td>Folic acid receptors</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform Infrared</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full with at half maximum</td>
</tr>
<tr>
<td>HB</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>HCT</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>HCT</td>
<td>Hard clotting time</td>
</tr>
<tr>
<td>HER2</td>
<td>Human epidermal growth factor receptor 2</td>
</tr>
<tr>
<td>HER3</td>
<td>Human epidermal growth factor receptor 3</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>IGF-IR</td>
<td></td>
</tr>
<tr>
<td>MCHC</td>
<td></td>
</tr>
<tr>
<td>MCV</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td></td>
</tr>
<tr>
<td>MTT</td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td></td>
</tr>
<tr>
<td>PAMAM</td>
<td></td>
</tr>
<tr>
<td>PARP</td>
<td></td>
</tr>
<tr>
<td>PCV</td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td></td>
</tr>
<tr>
<td>PEI</td>
<td></td>
</tr>
<tr>
<td>PRP</td>
<td></td>
</tr>
<tr>
<td>PSMA</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
</tr>
<tr>
<td>RBC</td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td></td>
</tr>
<tr>
<td>Bare SPIONs</td>
<td></td>
</tr>
<tr>
<td>SPIONs-Br</td>
<td></td>
</tr>
<tr>
<td>SPIONs-Br-FA</td>
<td></td>
</tr>
<tr>
<td>SPIONs</td>
<td></td>
</tr>
<tr>
<td>SPIONs-FA</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>VEGF-A</td>
<td></td>
</tr>
<tr>
<td>VEGFR</td>
<td></td>
</tr>
<tr>
<td>VSM</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>153</td>
</tr>
<tr>
<td>B</td>
<td>HPLC Chromatogram</td>
<td>154</td>
</tr>
<tr>
<td>C</td>
<td>Ethical Endorsement</td>
<td>155</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

One of the most life threatening diseases is cancer where the number of new cases is growing increasingly (Boyle and Levin, 2008). According to the last report, breast cancer was the most common cancer in females and also the first most common cancer among population regardless of sex in Malaysia. There were 3,242 female breast cancer cases diagnosed and reported to NCR (National Cancer Registry) in 2007 which accounted for 18.1% of all cancer cases reported and 32.1% are all female cases. The age pattern in 2007 showed a peak ASR (age-standardised rate) at the 50-59 age groups. The incidence of breast cancer was highest among Chinese where the ASR was 38.1 per 100,000 population followed by Indian and Malay with the ASR of 33.7 per 100,000 population and 25.4 per 100,000 populations, respectively. The percentage of breast cancer detected at stage I and II was 58%. Cancer of the cervix was the third most common cancer among women and fifth most common cancer in the entire general population. There were a total of 847 cases diagnosed in 2007 registered at NCR. Cervical cancer incidence rate increased after 30 years old and peaks at ages 65-69 years. Compared among the major races, Indian women had the highest incidence for cervical cancer followed by Chinese and Malay. The ASR for Indian females was 10.3 per 100,000 populations. The percentage of breast cancer detected at stage I and II was 55% (Omar and Tamin, 2011). Figure 1.1 shows ten most frequent cancers in all residence and Figure 1.2 presents ten most frequent cancers among female in Malaysia in 2007.
In spite of the accelerated progress of diagnostics and treatments, substantial
improvements over the survival rate of patients have not yet been seen over the course of past few decades (Jemal et al., 2010). Developing a novel approach to incur the detection of cancer in its early-stages as well as developing targetable therapies is a remarkable need.

Chemotherapy is the most practiced cancer treatment method in the world over the years. Nonspecific conventional chemotherapy normally leads to extreme side effects and is compromised because of its dose-limiting toxicity. Nanomaterials advances have made passive and active targeting strategies possible to boost up concentration of drugs inside tumor. Moreover, limiting the unwanted drug toxicity to healthy tissue is whereby achieved (Maeda, 2001; Allen, 2002; Torchilin, 2006). The targetable drug delivery is expected to eliminate troubles in conventional neat anticancer agents, including insolubility, accelerated clearance, unselective binding ability that leads to nonspecific toxicity towards healthy cells and decreases the drug dose delivered to the cancer cells (Ashley et al., 2011). Since nano drug carriers offer longer half-lives in blood circulatory system compared to free drugs, they unfold a key potential to target the cancer cells. Increased amount of delivery to the cancer cells is highly dependent on the lowered total body clearance of the nano drug carriers. Additionally, due to the presence of poor lymphatic drainage and leaky blood vessels in the tumor site, retention and permeation of the nano drug carriers to the tumor site are highly enhanced. Since the conjugates find their way into the cancer cells through endocytosis, active drug molecules are released via either acid or intracellular enzymatic hydrolysis. Hence, drug internalization into the cancer cells is boosted up via raising the binding extent of conjugates to the cancer cells. This route, selective endocytosis, has been investigated by the attachment of targeting ligands to the nano carriers (Chau et al., 2004).

Figure 1.3 illustrates the different localization of drug in targeted strategy by nano drugs compared with systemic treatment by classic drugs. For oral intake or intravenous injection of the classical drug, the bioactive component is distributed throughout the body without any distinctions between healthy and inflamed tissue. In targeting strategy, nano drugs are attached to the targeting agents whose ligands are overexpressed in interested areas. The nano drugs accumulate and the drug is
Recent nanotechnological advances offer platforms to fabricate ultrasmall probes like superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs are well known for their invaluable function in biomedical applications like magnetic resonance imaging (MRI), intracellular magnetic hyperthermia, targeted drug delivery, cell tracking and labelling, localized therapy, etc. (Laurent et al., 2008; Fang and Zhang, 2009). SPIONs are in preclinical studies as well as in early stage clinical trials (Laurent et al., 2008; McCarthy and Weissleder, 2008). A variety of methods have been reported to synthesize SPIONs like micro emulsion, sonochemical synthesis, thermal decomposition, hydrothermal synthesis and co-precipitation. (Woo et al., 2004; Wu et al., 2009). Co-precipitation is a neat and suitable method for synthesis of SPIONs smaller than 20 nm in diameter (Li et al., 2013). Desired SPIONs for various biomedical applications are between 10 nm and 100 nm in diameter (Wahajuddin, 2012). Recent investigations have reflected the fact that SPIONs are highly favorable drug targeting platforms because of their rather poor toxic effects (Neuberger et al., 2005) and high magnetic saturation magnitudes.
However, due to the hydrophobic nature of SPIONs, they are instable and prefer to aggregate in physiological condition (Jain et al., 2005; Mahmoudi et al., 2010). Moreover, the large surface area to volume ratio of SPIONs compels the tendency to aggregate thus limiting their naturally high level of surface energy (Vayssieres et al., 1998). Therefore, organic or inorganic materials are used to coat the SPIONs surface to barricade agglomeration and ensure biocompatibility. Coating not only stabilizes the SPIONs, but also promotes the attachment of biological moieties to them; the particles are targeted to cells by attaching functional groups to the SPIONs. Citric acid (C₆H₈O₇) has been extensively used as a biocompatible and short-chained tri-carboxylic acid to stabilize SPIONs for different biomedical applications (Liu and Huang, 1999; Nigam et al., 2011; Lapresta-Fernández et al., 2011).

Since high level of targeting is not offered by SPIONs due to their physiochemical profiles, active biomolecules are attached to the surface of the SPIONs to heighten the targeting specificity of nanoparticles (Lee et al., 2007; McCarthy and Weissleder, 2008; Goya et al., 2008). Clinical utility of the SPIONs is significantly increased after being bonded to the contrast agents allowing the SPIONs to accumulate in the sites of interest (Artemov, 2003; Choi et al., 2004; Leuschner et al., 2006). Additionally, various studies have pointed out diverse approaches for active targeting of SPIONs by protein structures, nutrients and therapeutics. Internalization of structures attached to the SPIONs are inhibited due to the bulky and immunogenic nature of antibodies (Zhang et al., 2002). Since nutrient pathways increase the uptake of SPIONs because of their direct linkage to cell proliferation process, most tumor types provide signals more excellently. Tumor cells are dependent to folic acid (FA) as it is one of the essential precursors in synthesis of DNA base (Weitman et al., 1992; Garin-Chesa et al., 1993; Ross et al., 1994), In normal cells, folate receptors are slightly expressed (Weitman et al., 1992) and it assists the nanoparticles to conjugate with FA to be internalized to the cancer cells simultaneously expressing folate receptors (FAR+) through receptor-mediated endocytosis pathway due to high levels of penetration and affinity (Barz et al., 2010).
In most of the studies (Müller et al., 2008; Razjouyan et al., 2015), mentioned, folic acid was used in combination with nanostructures other than citrate-coated maghemite. But, in this study, folic acid was conjugated to the SPIONs via the help of citric acid (CA) resulting in synthesis of a novel biomaterial with a monodisperse nature and desired characteristics offering targeting capabilities to track and attach to the FAR+ cancer cells while being highly blood compatible and remarkably reduced cytotoxicity.

Nowadays, the use of bromelain (Br) as an anticancer agent is fast becoming attractive. Several studies, both animal and human, indicate bromelain have antimitastatic activities (Pillai et al., 2013). Bromelain due to its anti-inflammatory, mucolytic, antithrombotic, wound debridement and anticancer properties has undergone investigations as a cysteine proteinase extracted from pineapple (Ananascomosus). Bromelain also offers anti-tumorigenic properties so that it enhances chemotherapy effect in both in vitro and in vivo trials particularly in breast and pancreas cancers. Proteolytic component of Bromelain may be chiefly liable to its anti-tumor activity according to a recent review (Bala et al., 2012). It is evident that glycosylated moieties providing cellular oncogenic survival pathways may be influenced since bromelain hydrolyses linkages of glycosides in glycoproteins. Moreover, there are merits to the disruption of the glycosidic linkages in the secreted mucin via proteolytic action of bromelain because it may disrupt the mucinous barrier and offers a more efficient passage for cytotoxic drugs (Pillai et al., 2013).

In this research, to make the surface of the synthesized bare SPIONs (γ-Fe$_2$O$_3$) hydrophilic, functional groups for further surface functionalization were provided, nanoparticles agglomeration was prevented and absorption of CA onto the surface of nanoparticles was carried out leaving a carboxylic acid exposed on the surface. The final product was engineered by conjugation of bromalain (Br) and folic acid (FA) to the SPIONs (Citrate coated iron oxide nanoparticles). Briefly, in the study reported herein an attempt has been made to synthesize the SPIONs-Br-FA as a novel engineered delivery of bromelain to the FAR+ cancer cells.
1.2 Problem statement

Chemotherapy, mastectomy, and radiotherapy are conventional cancer treatment methods which are not completely successful and they induce many side effects on healthy tissues. Currently, immense numbers of different chemotherapeutic anticancer agents are available, but the problem is drugs that are more effective tend to be more toxic. For example, one of the most effective and widely used anticancer agent cisplatin, is reported to cause adverse effects including nausea, vomiting, diarrhea, hair loss, loss in ability to taste food, hiccups, dry mouth, dark urine, decreased sweating, dry skin, and other signs of dehydration which considerably limit its applicability (Santabarbara et al., 2016). So, there is a need of a drug carrier system to minimize systemic side effects compared to chemotherapy by actively targeting the anticancer agent to the cancer cells.

Drugs used in classic chemotherapy are incapable of detecting cancer cells thus they influence both cancer cells as well as the healthy ones. Therefore patients tend to suffer from such classic conventional treatment. But, nano-drugs possess the capability to target the cancer cells actively since their surface can be functionalized via ligands that can specifically attach to the cancer cells.

On the other hand, metastasis treatment of tumors is unsuccessful by conventional methods. Metastasis is the secondary malignant growth at a distance from a primary site of cancer. Tumor itself can be treated by mastectomy or other treatment methods, but metastasis does not appear during the first stage of disease thus that it could not be detected and treated easily.

In the proposed study, folic acid will detect metastasis wherever it is and the complex will bind to the FAR+ cancer cell receptors to maximize the anticancer effect of bromelain on targeted cancer tissue (tumor site) and to minimize toxicity to the normal tissues (Wang et al., 2011).
1.3 Research objectives

The objectives of study are as follows.

I. To synthesize and characterize SPIONs-Br-FA.
II. To evaluate *in vitro* and *in vivo* binding affinity of SPIONs-FA.
III. To investigate *in vitro* and *in vivo* cancer inhibition efficacy of SPIONs-Br-FA and to compare it with the efficacy of neat Br.

1.4 Scope of research

In order to achieve the objectives, the scope of the study was as follows:

i) The bare SPIONs (γFe₂O₃) were synthesized using co-precipitation method and coated with citric acid (CA). The prepared bare SPIONs and coated SPIONs were then analyzed using FT-IR. In addition, iron oxide concentration was determined by atomic absorption spectroscopy (AAS).

ii) Then, bromelain (Br) as an anticancer agent and folic acid (FA) as a targeting agent were conjugated using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) click chemistry method to the coated SPIONs. The loading efficiencies of bromelain and folic acid were determined using Bradford assay and HPLC, respectively.
iii) The functionalized SPIONs were characterized by FT-IR, AAS, VSM, DLS, XRD, FESEM and TEM equipment.

iv) The biocompatibility of synthesized delivery system in each synthesis step was determined using MTT, haemolysis, blood aggregation and blood clotting time assays.

v) Binding ability of the developed coated SPIONs and SPIONs-FA to HSF 1184, MDA-MB-231, MDA-MB-468, HeLa and 4 T1 cells was investigated using qualitative (Prussian Blue Assay) and quantitative (AAS) methods.

vi) The MTT assay was carried out on HSF 1184, MDA-MB-231, MDA-MB-468, HeLa and 4 T1 cells to find the cytotoxicity effect of synthesized formulation in each step.

vii) The biodistribution study was carried out in all important organs using colorimetric (AAS) and TEM methods in established 4 T1 tumor bearing mice model.

viii) In the last step, after treatment protocol performance on 4 T1 tumor bearing mice model, the tumor volume and survival rate was measured to investigate the effectiveness of the proposed formulation on tumor bearing mice.

In this study, HeLa, 4 T1 and MDA-MB-231 cancer cell lines were used as (FAR+) targeted cells while HSF 1184 and MDA-MB-468 was used as (FAR-) non-targeted cells.

1.5 Significance of study

The synthesized SPIONs-Br-FA is a novel and safe delivery system to
minimize the side effect of anticancer agents to the normal tissues and to maximize their toxic effect on tumor site. In this study, a novel nano delivery system (SPIONs-Br-FA) was developed for the first time based on our hypothesis that the effectiveness of SPIONs-Br-FA on cancer cell was improved compared to neat Br treatment. Targeted delivery of bromelain as an anticancer agent to the cancer cells leads to the possibility of metastasis treatment and minor systemic side effects compared to the neat Br treatment. Another significance of this study includes the enhancement of bromelain delivery in the non-invasive and cost-effective manner utilizing minimal dosage of drug to achieve maximum potency.

1.6 Thesis Organization

The thesis is divided into five chapters. The first chapter describes the research background, problem statement, research objectives, scope of research and significance of study.

The second chapter consists of comprehensive literature review based on the research topics. In this chapter, the description on the related literatures such as barrier to conventional cancer treatments, tumor vasculature, drug delivery, nanotechnology advances in drug delivery, concept of passive and active targeting, active targeting by folic acid and recent work on bromelain are reviewed.

The third chapter explains the methodology used in this study. Initially, it describes the details and procedures to synthesize and characterize SPIONs-Br-FA and finally explains in vitro and in vivo assessments of synthesized formulations. This chapter also includes the list of materials used in this research.

Forth chapter exhibits and discusses the results obtained. This chapter has three main sections: (i) development and characterization of SPIONs-Br-FA, (ii) in vitro tests including biocompatibility studies, binding studies, cytotoxicity studies, morphological studies of cells, scratch motility and clonogenic assays, and (iii) in
REFERENCES

on folate receptor (FR) mediated cellular uptake. *Biomacromolecules*, 11(9), 2274–2282.

antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein.
Cancer Research, 51(22), 6125–6132.

Differences between normal cell and tumor 2009. Available from: <https://universe-

of tumor type and microenvironment. *Proceedings of the National Academy of Sciences*, 95(8), 4607–4612.

Illés, E., Szekeres, M., Kupcsik, E., Tóth, I. Y., Farkas, K., Jedlovszky-Hajdú, A. and

4128–4158.

Salvatorelli, E., Menna, P., Cascegna, S., Liberi, G., Calafiore, A. M., Gianni, L. and

efficient magnetic resonance probes for intracellular labeling. *Journal of the American Chemical Society*, 127(28), 9992–9993.

Ethnopharmacology, 22(2), 191–203.

Veiseh, O., Gunn, J. W. and Zhang, M. (2010). Design and fabrication of magnetic

313-327.

