DEVELOPMENT OF DUAL-LAYER HOLLOW FIBER WITH MODIFIED ELECTROLYTE FOR MICRO-TUBULAR SOLID OXIDE FUEL CELL

SITI MUNIRA BINTI JAMIL

UNIVERSITI TEKNOLOGI MALAYSIA
DEVELOPMENT OF DUAL-LAYER HOLLOW FIBER WITH MODIFIED ELECTROLYTE FOR MICRO-TUBULAR SOLID OXIDE FUEL CELL

SITI MUNIRA EINTI JAMIL

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Gas Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

JANUARY 2017
In the Name of ALLAH, The Most Gracious and The Most Merciful

Specially dedicated to my beloved husband

(Ahmad Taufiq Abd Jaafar)

my children

(Muhammad Al-Fateh, Solahuddeen Al Ayyubi)

my parents

(Jamil Kasa, Che Amah Abd Kadir)

siblings

(Rosli, Siti Norjuita, Mohd Fitri, Mohd Haikal Hakim)

in-laws

(Abd Jaafar Shafie, Masri Osman, Ruqayyah, Salahuddin, Atiqah, Muhammad, Nawal, Salman, Najihah)

and friends for their continuous support and encouragement throughout this study
ACKNOWLEDGEMENT

Alhamdulillah, first and foremost I thank to Allah the Almighty for his Grace, Mercy and Guidance that awarded me the strength to accomplish this three and a half years of study.

Secondly, I would like to express my sincere appreciation and gratitude to my supervisor, Dr Mohd Hafiz Dzarfan, a prolific researcher in Solid Oxide Fuel Cell for his guidance, precious advice and continuous support throughout this study. Same goes to my co-supervisors Dr Juhana, an expert in Direct Methanol Fuel Cell and Dr Mukhlis, a skillful researcher in Ceramic Membrane for kindly sharing their extensive knowledge and expertise.

In addition, I would like to acknowledge Prof Dr Yugi Iwamoto, Prof Dr Masaki Tanemura (Nagoya Institute of Technology, Japan) and Sakura Science Club, for kindly providing me assistance with the sample analysis during the attachment. I am also indebted to Prof Dr Kang Li (Imperial College, London) for his valuable suggestion during this study. Special thanks to Advanced Membrane Technology Research Center (AMTEC) members for the technical supports and assistances. Extended thanks dedicated to Prof Dr Ahmad Fauzi Ismail (Director of AMTEC), Dr Zamri, Dr Maizura, Dr Farhana, Dr Nadzirah, Mrs Halimah, Ms Norfazliana, Ms Norfadhilatuladha, Ms Siti Khadijah, Ms Norazureen, Ms Huda, Ms Zanariah, Mr Azuva, Mr Muhazri, Mr Hilmi and many others whom I have not mentioned here, for the supports, encouragement and prayers.

I also owe a special debt of gratitude to Ministry of Education Malaysia for MyPhD (MyBrain15) scholarship and Ministry of Science, Technology and Innovation Malaysia (MOSTI) for their financial support during the course of my study.

My unlimited appreciation goes to my family for their prayers, irreplaceable encouragement and understanding. Also a special thanks to my husband, Taufiq who has accompanied me even in the hardest time, for his love, patience and emotional support. My boys; Fateh and Solah whose inspired me to work even harder to achieve higher academic values, to contribute more to the community and endeavor to become a better rounded person. Lastly, I am grateful to those who have directly or indirectly assisted me in the preparation of this thesis and I hope it will be beneficial to Islam and ummah.
The excellent ionic conductivity at temperature ranges from 400-700 °C has made cerium gadolinium oxide (CGO) as one of promising alternative solid electrolyte materials for intermediate temperature solid oxide fuel cell (IT-SOFC) application. However, the requirement of high sintering temperature up to 1550 °C for densification of CGO electrolyte complicates the cell fabrication process as it reduces the porosity in the electrode layers, particularly in the co-sintering step of anode/electrolyte dual-layer hollow fiber (DLHF). Hence, the fabrication of the DLHF is challenging due to the different sintering behaviors of the each layer. The main objective of this study is to develop anode/electrolyte DLHFs with improved electrolyte properties with reduced co-sintering temperature for IT-SOFCs via a single-step phase inversion-based co-extrusion/co-sintering technique. The sintering properties of electrolyte flat sheet was studied by comparing two approaches, (i) using mix particle size electrolyte and (ii) addition of lithium oxide as sintering additive in the electrolyte. The DLHF with modified electrolyte was later fabricated by phase inversion based co-extrusion and co-sintered at temperature ranging from 1400 to 1500 °C. The DLHF was evaluated in term of the morphology, mechanical strength and gas-tightness as well as electrical conductivity, porosity and permeability of the anode layer. This study showed that a dense CGO flat sheet layer sintered at 1450 °C with the addition of 30% nano size CGO particles were obtained. Meanwhile, the doping of 2 mol% of lithium nitrate into CGO was found to reduce the sintering temperature to 1400 °C. When the co-sintering temperature increased, the mechanical strength, gas-tightness and electrical conductivity were increased, whereas the porosity and permeability of the anode layer were decreased. The DLHF that was co-sintered at 1450 °C showed sufficient properties and therefore, it was chosen for the construction of micro-tubular SOFC (MT-SOFC). When comparing the maximum power density of MT-SOFC namely nickel (Ni)-CGO/CGO (unmodified), Ni-CGO/30%nano-70%micron CGO (first approach) and Ni-CGO/lithium (Li)-CGO (second approach); it was found that the Ni-CGO/30%nano-70%micron CGO cell performed the best. At 500 °C, the cell produced the highest maximum power density, which was 275 Wm$^{-2}$ as compared to Ni-CGO/Li-CGO cell (60 Wm$^{-2}$) and Ni-CGO/CGO cell (200 Wm$^{-2}$). Porous anode in Ni-CGO/30%nano-70%micron CGO DLHF provided active reaction site, while dense electrolyte layer resulted from pore filling caused by the introduction of 30% nano sized CGO particles improved the gas-tightness of the electrolyte. Meanwhile, the closed pore caused by the migration of Li ions in anode sponge-like region of Ni-CGO/Li-CGO hindered the triple phase boundary region that impaired the cell performance. This limited the inclusion of Li in DLHF design. Nevertheless, the results from this study has proven the feasibilities to accelerate the densification of electrolyte as well as presented an advanced electrolyte material for MT-SOFC.
Kekonduksian ionik yang sangat baik pada julat suhu antara 400-700 °C telah menjadikan cerium gadolinium oksida (CGO) sebagai bahan alternatif elektrolit pepejal untuk penggunaan sel bahan api pepejal teroksida (IT-SOFC). Walau bagaimanapun, keperluan suhu pensinteran yang tinggi sehingga 1550 °C untuk pemadatan CGO telah merumitkan proses fabrikasi sel kerana mengurangkan keliangan dalam lapisan elektrod terutamanya dalam langkah pensinteran bersama anod/elektrolit gentian geronggang dwi lapisan (DLHF). Oleh itu, fabrikasi DLHF adalah mencabar berikutan perbezaan perbezaan kelakuian pensinteran dalam setiap lapisan. Objektif utama kajian ini adalah untuk membangunkan anod/elektrolit DLHF dengan ciri elektrolit yang lebih baik dan mengurangkan suhu pensinteran untuk IT-SOFCs melalui teknik langkah tunggal songsangan fasa bersama penyemperitan dan pensinteran. Sifat pensinteran kepingan rata elektrolit telah dikaji dengan membandingkan dua pendekatan; (i) menggunakan elektrolit dengan saiz partikel bercampur dan (ii) penambahan litium oksida sebagai bahan tambahan dalam elektrolit. DLHF dengan elektrolit yang diubahsuaikan kemudiannya dihasilkan dengan teknik songsangan fasa bersama penyemperitan dan pensinteran pada suhu antara 1400-1500 °C. DLHF ini dinilai dari segi morfologi, kekuatan mekanikal dan keketatan gas serta kekonduksian elektrik, keliangan dan kebolehtelapan lapisan anod. Didapti lapisan kepingan rata CGO padat yang disinter pada 1450 °C dengan tambahan 30% zarah CGO saiz nano dapat diperoleh. Sementara itu, pengedopan 2 mol% litium nitrat ke dalam CGO telah menurunkan suhu pensinteran kepada 1400 °C. Apabila suhu pensinteran bersama meningkat, kekuatan mekanikal, keketatan gas dan kekonduksian elektrik meningkat manakala keliangan dan kebolehtelapan lapisan anod berkurangan. DLHF yang telah disinter bersama pada suhu 1450 °C menunjukkan ciri yang mencukupi dan oleh itu, telah dipilih untuk pembinaan tiub mikro SOFC (MT-SOFC). Dengan membandingkan ketumpatan kuasa maksimum MT-SOFC iaitu nikel (Ni)-CGO/CGO (tidak diubahsuaian), Ni-CGO/30%nano-70%mikron CGO (pendekatan pertama) dan Ni-CGO/litium (Li)-CGO (pendekatan kedua); didapti sel Ni-CGO/30%nano-70%mikron CGO menunjukkan prestasi terbaik. Pada 500 °C, sel tersebut menghasilkan ketumpatan kuasa maksimum yang paling tinggi iaitu 275 Wm⁻² berbanding sel Ni-CGO/Li-CGO (60 Wm⁻²) dan Ni-CGO/CGO (200 Wm⁻²). Anod berliang dalam sel Ni-CGO/30%nano-70%mikron CGO menyediakan tapak tindakbalas aktif manakala lapisan elektrolit padat terhasil daripada pengisian liang dengan pengenalan 30% zarah CGO bersaiz nano telah meningkatkan keketatan gas elektrolit. Manakala liang tertutup disebabkan oleh perpindahan ion Li dalam kawasan anod bagi sel Ni-CGO/Li-CGO telah menghalang rantau sempadan tiga fasa yang menjejaskan prestasi sel. Ini telah menghadkan penglibatan Li dalam reka bentuk DLHF. Walau bagaimanapun, hasil kajian ini telah membuktikan kebolehlaksanaan untuk mempercepatkan pemadatan elektrolit dan juga mengemukakan bahan elektrolit termaju untuk MT-SOFC.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1
1.2 Problem Statement 9
1.3 Objectives and Scopes 11
1.4 Significance of Study 12
1.5 Thesis Organisation 12

2 LITERATURE REVIEW

2.1 Introduction 15
2.2 Recent Fabrication Techniques for micro-tubular SOFCs Support 16
2.3 Conventional Extrusion Technique 17
2.3.1 Single Extrusion 18
3 METHODOLOGY

3.1 Introduction 72
3.2 Materials 77
3.3 Design of Experiment 78
3.3.1 Preparation of Suspensions using Mix Particle Size of CGO 78
3.3.2 Preparation of Lithium doped CGO Powders and Suspensions 79
3.3.3 Preparation of Electrolyte Flat Sheet 80
3.4 Characterization of Powders 80
3.5 Characterization of the Flat sheet 82
3.6 Preparation of Dual-layer Hollow Fiber by Co-extrusion/co-sintering Technique 83
3.7 Characterization of the dual-layer hollow fiber 86
3.7.1 Scanning Electron Microscope (SEM) 86
3.7.2 Three-point Bending 86
3.7.3 Mercury Intrusion Porosimetry 87
3.7.4 Gas Permeation and Gas Tightness 87
3.7.5 Electrical Conductivity 89
3.8 Micro-tubular SOFC Test 90
ELECTROLYTE MODIFICATION USING MIX PARTICLE SIZES

4.1 Introduction 93

4.2 Results and Discussions 93

4.2.1 Particles Behaviour 93

4.2.2 Morphologies, Surface Roughness and Mechanical Strength of Flat Sheet 100

4.2.3 Morphologies, Mechanical Strength and Gas Tightness of Dual-Layer Hollow Fibers 104

4.4 Conclusion 109

ELECTROLYTE MODIFICATION BY ADDITION OF LITHIUM OXIDE AS SINTERING ADDITIVE

5.1 Introduction 111

5.2 Results and Discussions 112

5.2.1 Thermal decompositions of LiNO$_3$ and Li-CGO powders 112

5.2.2 Shrinkage Analysis of Li-CGO powders 114

5.2.3 Insight observation of Li-CGO powders 116

5.2.4 XPS analysis of Li-CGO electrolyte precursor 117

5.2.5 Effect of calcination temperature on the crystallinity of Li-CGO powders 121

5.2.6 Effect of calcination temperature on the surface area of Li-CGO 122

5.2.7 Effect of calcination temperature on the chemical interaction in Li-CGO powders 123

5.2.8 Effect of sintering additive on electrolyte suspension 125

5.2.9 Effect of sintering additive on microstructure of CGO electrolyte 128

5.3 Conclusion 133
DUAL-LAYER HOLLOW FIBER FABRICATION WITH ADDITION OF ELECTROLYTE SINTERING ADDITIVE 134

6.1 Introduction 134
6.2 Results and Discussions 134
 6.2.1 Fabrication of NiO-CGO/Li-CGO dual-layer hollow fiber precursors 134
 6.2.2 Morphological study of Ni-CGO/Li-CGO dual-layer hollow fiber 139
 6.2.3 Mechanical strength and gas tightness properties of Ni-CGO/Li-CGO dual-layer hollow fiber 142
6.3 Conclusion 145

MICRO-TUBULAR SOLID OXIDE FUEL CELL DEVELOPMENT 146

7.1 Introduction 146
7.2 Results and Discussions 147
 7.2.1 Anode Properties 147
 7.2.1.1 Pore Distribution and Porosity of Anode 147
 7.2.1.2 Permeation and Mechanical Strength of the Anode Hollow Fiber 150
 7.2.1.3 Electrical Conductivity of Anode at Different Sintering Temperatures 152
 7.2.2 Comparison of Dual-layer Hollow Fibers Properties using Different Modification Approaches 154
 7.2.2.1 Morphological Studies 154
 7.2.2.2 Mechanical Strength and Tightness Properties 157
 7.2.2.3 MT-SOFC Performance 158
 7.3 Conclusion 164
8 CONCLUSIONS AND RECOMMENDATIONS 165

8.1 General Conclusions 165

8.1.1 Modification of the Sintering Properties of CGO Electrolyte Flat Sheet 165

8.1.2 Development of an Anode/electrolyte Dual-layer Hollow Fiber 166

8.1.3 Properties of Anode/electrolyte Dual-layer Hollow Fiber 167

8.1.4 Electrochemical Performance of Micro-tubular SOFC 167

8.2 Recommendations for Future Works 168

8.2.1 Submicron size of CGO particles 169

8.2.2 Varying the sintering additive loading 169

8.2.3 Anode Functional Layer 169

8.2.4 Bi-layer electrolyte 170

8.2.5 Dual-layer hollow fiber with thinner electrolyte 170

REFERENCES 171

Appendices A-B 194-197
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Fuel Cell Types (U.S Department of Energy)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Comparison between YSZ and CGO systems</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Recent development of single micro-tubular SOFCs using conventional extrusion</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Recent development of single and multiple layer micro-tubular SOFCs using phase-inversion based extrusion</td>
<td>59</td>
</tr>
<tr>
<td>2.3</td>
<td>Comparison between Ram Extrusion and Phase Inversion-based Co-extrusion</td>
<td>64</td>
</tr>
<tr>
<td>2.4</td>
<td>Sintering additive effectiveness comparison</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Equipment for characterizations</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>List of materials</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Suspension composition of mix particle size CGO</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>Dual-layer hollow fiber suspension compositions</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>Extrusion parameters of the fabricated dual-layer hollow fiber precursor</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Surface area, pore volume and pore size of the mix particles size CGO</td>
<td>97</td>
</tr>
<tr>
<td>5.1</td>
<td>Shrinkage temperature of Li-CGO powders</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Binding energies and atomic concentrations of XPS survey spectrum on Li-CGO surface</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Surface area of Li-CGO at different calcination temperature</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>FT-IR absorption band for functional group of CGO, LiNO$_3$, and Li-CGO</td>
<td>124</td>
</tr>
<tr>
<td>5.5</td>
<td>Electrolyte Suspension Compositions</td>
<td>126</td>
</tr>
</tbody>
</table>
6.1 Extrusion parameters of the fabricated NiO-CGO/Li-CGO precursor 135

7.1 Comparison of anode-supported micro-tubular SOFCs performance at 500 to 600 °C 163
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical SOFC Designs</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>(A) The number of articles on micro-tubular SOFCs. The data is based on the number of articles mentioning micro-tubular SOFCs in the citation database Scopus in August 2016. (B) The country-wise distribution in micro-tubular SOFC research. The data is based on the number of articles mentioning micro-tubular SOFC in the citation database Scopus in August 2016</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Geometries of SOFC [8]</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Overall Thesis Structure</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>A generalized flow sheet for preparation of tubular SOFC [42]</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Light optical photos of the YSZ electrolyte surfaces (a–c) during drying and (d) after sintering [9]</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Photographs of C-shaped plastic tube holders [43]</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Plastic mass ram extrusion process (Reproduced from [16])</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Cross-sectional SEM images of the 0.8 mm tube after sintering at 1450 °C for 6 h in air [16]</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>SEM images of the anode tubes before reduction (a) Cell A (b) Cell B [53]</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>Microstructure of the LSM-supported micro tubular cell [55]</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Optical micrographs showing (A) the green filaments fabricated using various reduction orifices and (B) the fabricated tubes after co-sintering at 1350 °C for 3 hours [88]</td>
<td>33</td>
</tr>
</tbody>
</table>
2.9 Schematic ternary phase diagram of polymer/solvent/non-solvent during polymeric membrane formation [92]

2.10 Asymmetric structure of ceramic hollow fiber precursor [95]

2.11 SEM Images of the YSZ electrolyte membrane with asymmetric structure [99]

2.12 SEM micrographs of the highly asymmetric YSZ hollow fiber precursors: (a) cross-sectional; (b) membrane wall [100]

2.13 Photo images of the (a) spinneret, (b) internal structure, and (c) examples of sintered NiO/YSZ hollow fibers [105]

2.14 Schematic of simulated current collecting modes for the hollow fiber micro-tubular SOFC. Case 1: (A) connections at same end; Case 2: (B) connections at both ends; Case 3: (C) connections at opposite ends; Case 4: (D) cathode ‘mesh’ connection along its length and anode single end and Case 5: (E) both cathode and anode meshes (ideal case) [107]

2.15 Schematic diagram of the phase inversion-based co-extrusion process of the dual-layer hollow fibers precursor [8]

2.16 Design and dimensions of the triple orifice spinneret [8]

2.17 SEM images of the (a) overall view and (b) cross-sectional view of the first generation dual-layer hollow fiber, co-sintered at 1500 °C [115]

2.18 SEM images of the second generation dual-layer hollow fibers [17]

2.19 SEM images of the third generation dual-layer hollow fibers [18]

2.20 Schematic diagram of the phase-inversion based co-extrusion process. The inset shows the picture of the quadruple-orifice spinneret (Data from [118])

2.21 SEM images (backscattered electrons (BSE) mode) of (a) whole view, (b) cross-section and (c) a higher magnification of cross-section of the sintered triple-layer hollow fibres, using the AFL extrusion rate at 3 ml/min (Data from [118])
2.22 SEM images of the fiber with the AFL extrusion rate of 2 ml min\(^{-1}\): (a) overall view, (b) cross-section, (c) electrolyte/electrode interface [119] 55

2.23 Photographic pictures of (a) quadruple-orifice spinneret; (b) example of triple-layer precursors [119] 55

2.24 The Void at A Three Disk Junction which is Just Filled by a Touching Disk of Radius \(R_4\) [42] 64

2.25 The Reduction in Specific Volume for Mixed Large and Small Spheres, showing the Condition of Optimal Packing where the Small Spheres fill all Voids in the Large Sphere Packing [42] 65

3.1 Research Methodology Flowchart 75

3.2 Steps involved in metal nitrate doping procedure 79

3.3 Fabrication procedure of flat sheet membrane precursor via phase inversion technique 80

3.4 Dual-layer hollow fiber fabrication steps 84

3.5 Structural design of a dual-layer hollow fiber 81

3.6 Schematic representation of three-point bending strength testing apparatus 87

3.7 Schematic diagram of apparatus for measuring gas permeation [8] 88

3.8 Set-up of two-point DC technique 89

3.9 Development of complete micro-tubular SOFC system 91

3.10 Schematic diagram of the micro-tubular SOFC performance test set-up 92

4.1 (a) Sintering curves and (b) sintering rate curves of electrolyte materials (heating rate 10 °C min\(^{-1}\)) 94

4.2 Particle rearrangements during sintering (a) micron size, (b) mix particle size, (c) particle necking stage 95

4.3 \(\text{N}_2\) adsorption-desorption isotherms and inset correspond to the BJH pore size distribution of electrolyte powders (a) N-00, (b) N-10, (c) N-20, (d) N-30, (e) N4-0 and (f) N-50 98

4.4 Viscosity data of the prepared suspensions 99

4.5 SEM cross sections images of N-30 and N-00 flat sheet electrolytes at different sintering temperatures 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>AFM images of N-30 at different sintering temperature: (a) 1350 (b) 1400 (c) 1450; (i) 3D view, (ii) height view, and (iii) lateral size distribution</td>
</tr>
<tr>
<td>4.7</td>
<td>Bending strength of the flat sheet at different sintering temperatures</td>
</tr>
<tr>
<td>4.8</td>
<td>Cross-section SEM images of the Ni–CGO/CGO N-00 and N-30 dual-layer hollow fiber at different co-sintering temperatures</td>
</tr>
<tr>
<td>4.9</td>
<td>Outer surface SEM images of the Ni–CGO/CGO N-00 and N-30 dual-layer hollow fiber at different co-sintering temperatures</td>
</tr>
<tr>
<td>4.10</td>
<td>Bending strength of the dual-layer hollow fiber at different co-sintering temperatures</td>
</tr>
<tr>
<td>4.11</td>
<td>Gas-tightness test result of the dual-layer hollow fibers at different co-sintering temperatures</td>
</tr>
<tr>
<td>5.1</td>
<td>TG and DSC curves of LiNO$_3$</td>
</tr>
<tr>
<td>5.2</td>
<td>DSC of Li-CGO at different calcination temperature</td>
</tr>
<tr>
<td>5.3</td>
<td>TGA diagrams of LiNO$_3$, CGO and Li-CGO at different calcination temperature</td>
</tr>
<tr>
<td>5.4</td>
<td>(a) Sintering curves and (b) sintering rate curves of undoped CGO and Li-doped CGO (heating rate 10 °C min$^{-1}$)</td>
</tr>
<tr>
<td>5.5</td>
<td>TEM image and HRTEM image (a) as-prepared Li-CGO powder and (b) Li-CGO calcined at 700 °C</td>
</tr>
<tr>
<td>5.6</td>
<td>XPS spectrum of Li-doped CGO electrolyte precursor</td>
</tr>
<tr>
<td>5.7</td>
<td>X-ray diffractograms of Li-CGO powders compared with LiNO$_3$ and CGO</td>
</tr>
<tr>
<td>5.8</td>
<td>FT-IR spectrum of LiNO$_3$, CGO and Li-CGO powders at different calcination temperature</td>
</tr>
<tr>
<td>5.9</td>
<td>(a) D-140 and (b) D-500 flat sheets while immersing in water</td>
</tr>
<tr>
<td>5.10</td>
<td>SEM images of the full cross-section of the flat sheet</td>
</tr>
<tr>
<td>5.11</td>
<td>SEM cross-sectional images of undoped CGO and Li-CGO at different sintering temperatures</td>
</tr>
<tr>
<td>5.12</td>
<td>SEM surface images of undoped CGO and Li-CGO at different sintering temperatures</td>
</tr>
</tbody>
</table>
5.13 Liquid Phase Sintering

5.14 X-ray diffractograms of D-700 flat sheet sintered at 1400 °C compared with D-700 and CGO

6.1 Microstructure of the dual-layer hollow fiber precursors

6.2 Photograph of Li-CGO dual-layer hollow fiber after sintering step; (a) 1350 °C (b) 1400 °C (c) 1450 °C and (d) 1500 °C

6.3 Photograph of Li-CGO dual-layer hollow fiber after reducing step; (a) 1350 °C (b) 1400 °C (c) 1450 °C and (d) 1500 °C

6.4 SEM images of the Li-CGO/Ni-CGO dual-layer hollow fiber at different co-sintering temperature: (a) 1450 °C, (b) 1500 °C, at different views. (1) Overall view of the hollow fiber, (2) cross-section of the hollow fiber, (3) anode cross-section of the hollow fiber, (4) electrolyte cross-section of the hollow fiber, (5) inner surface of the hollow fiber, (6) outer surface of the hollow fiber

6.5 Bending strength of the Li-CGO dual-layer hollow fibers at different co-sintering temperature

6.6 Cross-section SEM image of Ni-CGO/unmodified CGO co-sintered at 1450 °C

6.7 Gas-tightness property as a function of co-sintering temperature

7.1 Pore size distributions for the Ni–CGO hollow fiber at different sintering temperature

7.2 Porosity of the Ni–CGO anode hollow fibres as a function of sintering temperature

7.3 Triple-phase boundary (TPB) in Ni-CGO anode

7.4 The N_2 permeation result of the Ni–CGO anode hollow fibres at different sintering temperature

7.5 Bending strength of the Ni–CGO anode hollow fibres at different sintering temperatures

7.6 Current-voltage characteristics at different sintering temperatures

7.7 Electrical conductivity of the anode layer hollow fibers
7.8 Cross-section SEM images of the dual-layer hollow fiber along with the zoomed outer layer which co-sintered at 1450 °C (a) unmodified CGO, (b) 30% nano-70% mic and (c) Li doped CGO

7.9 Bending strength and gas tightness properties of the dual-layer hollow fibers co-sintered at 1450 °C

7.10 Open-circuit voltage (OCV) and power density curves for modified CGO and unmodified CGO micro-tubular SOFCs at 500 °C with H₂ fuel flow rate of 20 cm³ min⁻¹

7.11 Impedance spectra for modified CGO and unmodified CGO micro-tubular SOFCs measured at 500 °C
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>Alkaline fuel cell</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CGO</td>
<td>Cerium gadolinium oxide</td>
</tr>
<tr>
<td>DMFC</td>
<td>Direct methanol fuel cell</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>Ferum oxide</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>HF</td>
<td>Hollow fibre</td>
</tr>
<tr>
<td>HT</td>
<td>High temperature</td>
</tr>
<tr>
<td>IT</td>
<td>Intermediate temperature</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Potassium carbonate</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>Li₂O</td>
<td>Lithium oxide</td>
</tr>
<tr>
<td>Li₂CO₃</td>
<td>Lithium carbonate</td>
</tr>
<tr>
<td>LaMnO₃</td>
<td>Lanthanum manganite</td>
</tr>
<tr>
<td>LSCF</td>
<td>Lanthanum strontium cobalt ferrite</td>
</tr>
<tr>
<td>LSM</td>
<td>Lanthanum strontium manganite</td>
</tr>
<tr>
<td>MCFC</td>
<td>Molten carbonate fuel cell</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium Oxide</td>
</tr>
<tr>
<td>MIEC</td>
<td>Mixed ionic electron conductor</td>
</tr>
<tr>
<td>MT</td>
<td>Micro-tubular</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>NiO</td>
<td>Nickel oxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methyl-2-pyrrolidinone</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OCV</td>
<td>Open circuit voltage</td>
</tr>
<tr>
<td>PAFC</td>
<td>Phosphoric fuel cell</td>
</tr>
<tr>
<td>PEMFC</td>
<td>Proton exchange membrane fuel cell</td>
</tr>
<tr>
<td>PES</td>
<td>Polyethersulfone</td>
</tr>
<tr>
<td>PF</td>
<td>Pore former</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly methyl methacrylate beads</td>
</tr>
<tr>
<td>RedOx</td>
<td>Reduced and Oxidation Atmosphere</td>
</tr>
<tr>
<td>Sc₂O₃</td>
<td>Scandia Oxide</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SOFC</td>
<td>Solid oxide fuel cell</td>
</tr>
<tr>
<td>SSR</td>
<td>Sintering shrinkage rate</td>
</tr>
<tr>
<td>TEC</td>
<td>Thermal expansion coefficient</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo-gravimetric analysis</td>
</tr>
<tr>
<td>TPB</td>
<td>Triple-phase boundaries</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>Yttria oxide</td>
</tr>
<tr>
<td>YSZ</td>
<td>Yttria-stabilized zirconia</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>Zirconia oxide</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area of hollow fibre</td>
</tr>
<tr>
<td>b</td>
<td>Width</td>
</tr>
<tr>
<td>BF</td>
<td>Bending strength</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>cP</td>
<td>Centipoise</td>
</tr>
<tr>
<td>D</td>
<td>Dry weight</td>
</tr>
<tr>
<td>d</td>
<td>Thickness</td>
</tr>
<tr>
<td>D_i</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>D_o</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>L</td>
<td>Length of hollow fibre</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mol</td>
<td>Mole</td>
</tr>
<tr>
<td>N</td>
<td>Load</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>M</td>
<td>Saturated weight</td>
</tr>
<tr>
<td>P</td>
<td>Gas permeability</td>
</tr>
<tr>
<td>p_a</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>p_0</td>
<td>Initial pressure</td>
</tr>
<tr>
<td>p_t</td>
<td>Final pressures</td>
</tr>
<tr>
<td>R</td>
<td>Gas constant</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>Symbol</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>S</td>
<td>Suspended weight</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time for measurements</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>(V_c)</td>
<td>Volume of the test cylinder</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>wt</td>
<td>Weight</td>
</tr>
<tr>
<td>(^\circ C)</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>%</td>
<td>Percent</td>
</tr>
<tr>
<td>(\mu \text{m})</td>
<td>Micrometre</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>194</td>
</tr>
<tr>
<td>B</td>
<td>Sintering Additive Calculation</td>
<td>197</td>
</tr>
</tbody>
</table>
Currently, the world is still dependent on fossil fuels as its major energy source. Nevertheless, the world today confronted with the issues of concern such as increasing energy consumption, energy security concerns, global warming and acid rain. Thus, using renewable energy and developing more efficient energy conversion devices have emerged as significant research and development (R&D) trends. Fuel cell is one of energy-conversion device that converts chemical energy directly to the electrical energy via electrochemical process. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Unlike batteries, fuel cells need a constant source of fuel and oxygen/air to sustain the chemical reaction. Thus, as long as the input is supplied, fuel cells can produce electricity continuously.

There are six common types of fuel cells as shown in Table 1.1. Primarily, their electrolyte classifies the fuel cells. This classification determines the chemical reactions that take place in the cell, the catalysts required, the temperature range in which the cell operates and the fuel required. These features typically affect the applications for which these cells are most suitable. In recent years, solid oxide fuel cells (SOFCs) have received tremendous attention due to their high-energy conversion efficiency, low emissions and excellent fuel flexibility.
Since 1960s, many studies conducted on solid oxide fuel cells (SOFCs) have been focusing on compact design and cell performance enhancement. Most of the developments focus on planar and tubular designs as shown in Figure 1.1. Typically, fabrication of planar SOFCs is cheaper due to its simpler techniques such as tape

Table 1.1: Fuel Cell Types (U.S Department of Energy) [1]

<table>
<thead>
<tr>
<th>Name</th>
<th>Electrolyte</th>
<th>Anode gas (fuel)</th>
<th>Cathode gas (oxidant)</th>
<th>Operating temperature</th>
<th>Development Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC (Alkaline Fuel Cell)</td>
<td>Potash</td>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>Below 80 °C</td>
<td>Commercial</td>
</tr>
<tr>
<td>PEMFC (Proton Exchange Membrane Fuel Cell)</td>
<td>Polymer Membrane</td>
<td>Hydrogen</td>
<td>Oxygen or Atmospheric Oxygen</td>
<td>to 120 °C</td>
<td>Being developed</td>
</tr>
<tr>
<td>DMFC (Direct Methanol Fuel Cell)</td>
<td>Polymer Membrane</td>
<td>Methanol</td>
<td>Atmospheric Oxygen</td>
<td>90 – 120 °C</td>
<td>Being developed</td>
</tr>
<tr>
<td>PAFC (Phosphoric Acid Fuel Cell)</td>
<td>Phosphorus</td>
<td>Hydrogen</td>
<td>Atmospheric Oxygen</td>
<td>200 °C</td>
<td>Commercial</td>
</tr>
<tr>
<td>MCFC (Molten Carbonated Fuel Cell)</td>
<td>Alkali-carbonates</td>
<td>Hydrogen</td>
<td>Atmospheric Oxygen</td>
<td>650 °C</td>
<td>Being developed</td>
</tr>
<tr>
<td>SOFC (Solid Oxide Fuel Cell)</td>
<td>Ceramic</td>
<td>Hydrogen</td>
<td>Atmospheric Oxygen</td>
<td>500 – 1000 °C</td>
<td>Being developed</td>
</tr>
</tbody>
</table>
casting and screen printing [2]. Furthermore, the planar SOFCs offer higher power densities production due to inherently shorter path lengths for electrons to travel from anode to cathode sides. However, the design has certain disadvantages including inherently lower thermal stability and larger areas that require high temperature for gas sealing. On the other hand, the tubular type is relatively well-established in terms of design and manufacturing technology [3]. It offers better thermo-cycling behavior and easier sealing around the circumference of the tubes [4]. However, its difficulty in designing complete interconnects axially and circumferentially because it creates longer current paths which often increase the ohmic loss. It also decreases the power densities as compared with its planar counterpart.

![Typical SOFC Designs](image)

(a) Planar SOFC [5] (b) Tubular SOFC [6]

Figure 1.1 Typical SOFC Designs

Started in early 1990s, Kendall and co-workers initiated an advanced cell design namely micro-tubular SOFCs [2]. This invention was driven from the effort to improve the performance of tubular SOFCs by reducing the cell size, from centimeter to the micron scale. It is remarkable that various potential benefits appear when the diameter gets smaller. The micro-tubular SOFC offers a greater tolerance to thermal cycling, quicker start-up capability, higher volumetric output density and portable characteristics compared to the conventional planar and tubular SOFCs [7]. These characters have promoted the research in micro-tubular SOFCs. Figure 1.2 (A) shows the analyze result from ‘Scopus’ search which reveals the increase in the number of articles published on micro-tubular SOFC over the last one decade (2006–2016). Besides, the reported electric current output from the micro-tubular SOFCs
has also increased greatly over the recent years. Figure 1.2 (B) shows the country-wise distribution of micro-tubular SOFC researchers, the data that was also drawn from ‘Scopus’. It is noticeable that the attraction in micro-tubular SOFC research is worldwide with increasing number of researchers from different countries.

Figure 1.2 (A) The number of articles on micro-tubular SOFCs. The data is based on the number of articles mentioning micro-tubular SOFCs in the citation database Scopus in August 2016. (B) The country-wise distribution in micro-tubular SOFC research. The data is based on the number of articles mentioning micro-tubular SOFC in the citation database Scopus in August 2016.
Generally, the design of SOFC can be configured into two geometries; self-supporting and supported concept [8]. As depicted in Figure 1.3, self-supporting refers to the electrolyte with thickness around 80-250 μm forms as structural element of the design while for the supported concept, the electrolyte is deposited as a thin layer <50 μm on porous electrode either cathode or anode.

Figure 1.3 Geometries of SOFC [9]

The micro-tubular SOFCs can be constructed into the anode supported, the cathode supported or the electrolyte supported configurations depending on the component providing the mechanical strength to the micro-tubular cells. The use of anode-supported design allows for a thinner electrolyte layer, which reduces electrolytic resistance losses and yields better conductance at lower temperatures compared to an electrolyte supported [10]. This configuration is generally recognized to increase the performance, but additional caution is needed to avoid the formation of microcracks and to ensure the electrolyte layer is entirely gas tight. Nevertheless, it should be addressed that majority of recent works on micro-tubular SOFCs uses the anode-supported design.
Recently, there is a trend to move to lower temperature operation, which is intermediate (500-700 °C) or low (<500 °C) operating temperature. High operating temperature system possesses several disadvantages on commercialization for instance, long-term stability of the cell components, materials as well as high manufacturing cost. Moreover, high operating temperature limits the range of material selection. In comparison to lower temperature operation, it affords more rapid start-up, improved durability, and higher robustness as well as simplified system requirements and wider choice of selecting materials.

Consequently, the electrolytes with high oxygen-ion conductivity at low temperatures have received tremendous attractions. Cerium gadolinium oxide (CGO) is an attractive electrolyte alternative to yttria stabilized zirconia (YSZ), owing to its superior oxygen ion conductivity at low temperatures [11]. Like zirconia, ceria-based electrolytes have a cubic, fluorite-type crystal structure. This structure affords the large oxygen ions with high mobility. However, at low oxygen partial pressures and at higher temperatures ceria is partially reduced and the material becomes an electronic conductor, which can cause short circuit [12]. Although the stability of ceria in low oxygen partial pressures is inferior to that of zirconia, the chemical stability of ceria with cathode materials is superior to that of zirconia. CGO has been shown to be stable with a wide variety of electrodes, including lanthanum strontium manganate (LSM), lanthanum strontium cobalt (LSC), lanthanum strontium ferrite (LSF), lanthanum strontium cobalt ferrite (LSCF) and lanthanum nickel ferrite (LNF) [13].

Indeed, the general requirements for an electrolyte are high ionic conductivity, low electronic conductivity, and stable in both oxidizing and reducing environments with good mechanical properties [12–15]. Thus, the electrolyte structure must be dense because it acts as membrane that separates the air and fuel compartments and must be an oxygen ion conductor. Henceforth, electrolyte is the heart of the fuel cell whereby it determines the performance of the cell. Literature studies shows that two electrolyte systems specifically YSZ and CGO have been widely explored for SOFCs [13][15]. Each electrolyte system offers advantages
along with a number of drawbacks. Table 1.2 shows the general comparison between YSZ and CGO systems.

Table 1.2: Comparison between YSZ and CGO systems

<table>
<thead>
<tr>
<th>Electrolyte system</th>
<th>YSZ</th>
<th>CGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temp</td>
<td>High Temp (800 – 1000 °C)</td>
<td>Intermediate Temp (500-700 °C)</td>
</tr>
<tr>
<td>Material Cost</td>
<td>Relatively less expensive</td>
<td>Relatively expensive</td>
</tr>
<tr>
<td>TEC</td>
<td>10.5×10^{-6} K^{-1}</td>
<td>12.5×10^{-6} K^{-1}</td>
</tr>
<tr>
<td>Conductivity</td>
<td>Ionic conductivity</td>
<td>Mixed ionic electronic conductivity at high temperature and low oxygen partial pressure</td>
</tr>
<tr>
<td>Mechanical strength</td>
<td>Sufficient mechanical strength</td>
<td>Ceria electrolytes are unstable mechanically at temperatures above 700 °C</td>
</tr>
<tr>
<td>Reaction with electrodes material</td>
<td>Chemical reaction with the cathode material</td>
<td>Unreactive towards potential electrode materials</td>
</tr>
<tr>
<td>Advantages</td>
<td>Provide high quality exhaust heat for cogeneration, and when pressurized, can be integrated with a gas turbine to further increase the overall efficiency of the power system.</td>
<td>Improved durability, wider choice for interconnecting material selection, and lower costs can be achieved by reducing the operating temperature below 700 °C</td>
</tr>
</tbody>
</table>

As shown in Table 1.2, YSZ fulfills the electrical requirements at high temperatures (800 - 1000 °C) and has good high temperature mechanical properties. However, one of its drawbacks is its reactivity with perovskite oxide electrodes such as LSM. At high temperatures, they react and forming pyrochlore, $La_2Zr_2O_7$, the perovskite SrZrO$_3$ or both [12]. Unless, the YSZ layer is protected with CGO layer [15]. Alternatively, CGO has received great attention as an electrolyte material and
it has the highest conductivity at lower temperature and lower polarization resistance [34]. Besides, doped ceria is more stable and relatively unreactive towards potential electrode materials.

Besides the progress in SOFC designs, development in the fabrication process is critically important to ensure the success of the cell. Previously, the fabrication of micro-tubular SOFC, which consists of three main components (i.e. anode, electrolyte and cathode), can only be achieved through multiple steps [17]. There are two common techniques that have been employed to fabricate the support of the cell which are plastic mass ram extrusion and dry-jet wet extrusion. For the ram extrusion technique, the support materials are mixed with binder and solvent to form a viscous paste. The paste is then extruded through a custom-made die using a ram extruder to obtain the support tubes. The support tubes are dried and cut to the desired length prior being subjected to the sintering process. The fabricated support tubes are usually of a symmetrical structure with large wall thicknesses, which results in a large resistance for the diffusion of fuel into the anode (in the case of anode-supported design).

In contrast, the dry-jet wet extrusion technique offers greater control over the morphology of hollow fiber (common terminology for the tubes prepared using this technique). The dry-jet wet extrusion is similar to the ram extrusion process. The main difference is that the spinning suspension or dope for the dry-jet wet extrusion is in suspension form and the ram extrusion is in paste or plastic mass form. Another major difference is the solidification process of the tube (or hollow fiber). In dry-jet wet extrusion, the solidification of the hollow fiber occurs via phase inversion process initiated by the solvent/non-solvent exchange. While in ram extrusion process, the tube is dried straight away after the extrusion prior to being subjected to the sintering process.

However, both techniques are only used to fabricate a single-layer of support, and thus, still require a multi-step in order to develop a complete fuel cell. By using dry-jet wet or ram extrusions, a support layer for example anode tube is first prepared and pre-sintered to provide mechanical strength to the fuel cell. The
electrolyte layer is then deposited and sintered prior to the final coating of cathode layer. Each step involves at least one high temperature heat treatment, making the cell fabrication time-consuming and costly with unstable control over cell quality.

For a more economical fabrication of micro-tubular SOFC with reliability and flexibility in quality control, an advanced dry-jet wet extrusion technique, i.e. a phase inversion-based co-extrusion process, is recently employed to fabricate a dual-layer hollow fiber, which consists of electrolyte and anode for intermediate temperature SOFC (IT-SOFC)[18]. Co-extrusion technique in developing an electrolyte/anode dual-layer hollow fiber for micro-tubular SOFC pioneered by Li and co-workers [19] and the cell from the prepared hollow fiber showed a very outstanding power output, approximately 2.32 Wcm$^{-2}$, which is almost double than the one prepared from conventional multi-step technique [20][21]. In comparison with conventional extrusion processes, the co-extrusion is more attractive due to the following reasons: (i) saving the production cost and time as it combines a number of processes into one; (ii) decreasing the risk of inducing defect; (iii) producing a great adhesion between layers.

1.2 Problem Statement

To date, IT-SOFC is more promising compared to HT-SOFC ones due to their better long-term durability and cost effectiveness. It has been reported that CGO possesses 4 to 5 times higher conductivity at lower operating temperatures [22–28], and thus, make it more suitable to be used as the electrolyte for IT-SOFC. However, sintering temperatures as high as 1550 °C are typically needed to densify CGO electrolyte [29] which increasing cost and difficulty in the cell fabrication process. Moreover, sintering of the layers at too high temperatures to obtain full densification of the electrolyte layer would cause an interfacial interdiffusion between the electrolyte and electrodes material which eventually generate a highly resistive interface that can diminish the ionic conductivity [30]. It should be note that high sintering temperature might reduce the porosity in the electrodes layers as well [31] particularly in the co-sintering step [18] of dual-layer hollow fiber (HF).
Keeping in mind that the anode component; usually nickel oxide (NiO), are normally sintered at 1400 °C, steps would be taken to lower the sintering temperature of electrolyte material so that it can be co-sintered together with the anode at lower temperature. Thus, modification of the electrolyte sintering properties is needed to establish an appropriate sintering profile that allows the production defect-free micro-tubular SOFC hollow fiber precursor with the desired microstructure and low energy consumption.

Currently, it has been reported that introducing metal oxides as the sintering additive can effectively reduce the sintering temperature of CGO up to 900-1200 °C [32–34] by liquid phase sintering mechanism. On the other hand, successful attempts of CGO sintered at 1250 - 1400 °C has been reported by introducing nano size particle of CGO as the starting powder [35–40]. As the small particles size exhibiting as high driving force [41], it is hypothesized that nano size powders enhance the densification at lower temperature. Nevertheless, the previous works only reported on CGO button cells prepared by pressing method. To the best of author’s knowledge, study on the effect of sintering additive and nano size particles on electrolytes densification prepared by phase inversion technique, has yet been reported. The feasibility of these approaches on phase inversion based co-extrusion/co-sintering technique is still unclear.

Realising the huge potential that is offered by phase inversion based co-extrusion/co-sintering technique, it is relevant to implement these two approaches in reducing the sintering temperature of CGO and understanding how it affects the microstructure, densification temperature, mechanical strength, gas tightness properties as well as the micro-tubular SOFC performance. This study is expected will produce a good quality micro-tubular SOFC with shorter fabrication time and thus the outcome is very novel and beneficial to the researchers in this area.
1.3 Objectives and Scopes

The main objective of this study is to develop anode/electrolyte dual-layer hollow fibres with improved electrolyte properties and reduced sintering temperature for intermediate temperature micro-tubular solid oxide fuel cells (SOFCs) via a single-step phase inversion-based co-extrusion/co-sintering technique. This objective has been achieved by accomplishing the following specific objectives:

a) To design the experiment in modifying the sintering properties of CGO electrolyte flat sheet via two approaches i.e; mix particle size CGO and sintering additive.

b) To fabricate an anode/electrolyte of both modified dual-layer hollow fiber solid oxide fuel cell by using a promising phase inversion-based co-extrusion/co-sintering technique.

c) To study the properties of both modified dual-layer hollow fiber in terms of its morphology, conductivity, electrolyte tightness, anode permeability and mechanical strength.

d) To conduct the current-voltage performance of both modified dual-layer hollow fiber as a complete SOFC.

In order to achieve the objectives, four scopes have been identified in this research. The scopes are:

a) Modifying the sintering properties of electrolyte via two approaches.

b) Fabricating anode/electrolyte of both modified dual-layer hollow fiber via co-extrusion/co-sintering technique.

c) Characterizing the physical and chemical properties of both modified dual-layer hollow fiber in terms of its morphology, crystal structure, mechanical strength, gas-tightness properties and gas permeability.

d) Performing micro-tubular SOFC test by potentiostat/galvanostat at temperature 500 °C.
1.4 **Significance of Study**

This study is expected to provide a better understanding on the fundamental principle for the fabrication of dual-layer hollow fiber for micro-tubular SOFC, which consists of the modifications of electrolyte layer by considering the morphological, mechanical strength and gas tightness of the precursors. It is acknowledged that nano size particles and sintering additive has been used in various fabrication techniques to reduce the sintering temperature of CGO, however little attention has been given on their application in phase-inversion technique. Therefore, attempts are made to investigate the potential of nano size CGO and Li$_2$O as sintering additive in this technique. By identifying the ideal characteristics of the nano size loadings and behaviors of the sintering additive, high performance micro-tubular SOFCs can be fabricated.

Up to now, no study has been conducted to implement these two approaches in preparing dual-layer hollow fiber via phase-inversion technique. This study could be beneficial to the researchers in this area regarding to the knowledge generation on fabricating modified dual-layer hollow fiber using a single-step technique. In addition, with the utilization of low sintered electrolyte, an improved quality of SOFCs component can be produced. This study has proven the possibility to accelerate the densification by incorporating nano size CGO and sintering additives as well as presented an advanced new material to reduce the sintering temperature of CGO. Thus, it would lead to the development of low cost micro-tubular solid oxide fuel cell, in order to make fuel cell technology able to compete economically with traditional energy technologies.

1.5 **Thesis Organisation**

This thesis consists of 8 Chapters and its organization is shown in Figure 1.4. Chapter 1 briefly introduces the research background of fuel cells particularly the micro tubular solid oxide fuel cell, the objectives and scopes of the study and overview of the thesis. Chapter 2 describes the literature review on conventional and
recent introduced phase inversion-based extrusion techniques, their characteristics and performances. It also provides a review on recent approaches to reduce the densification temperature of CGO. Other than that, the future direction is presented as well. Chapter 3 presents a detailed methodology of this research work in order to achieve the targeted objectives.

Chapter 4 reports the potential of the first approach which is introducing mix particle size of CGO to reduce the densification temperature. The first part focuses on the particles behavior particularly the shrinkage rate of the mix particle size CGO. The second part clarifies the effect of nano size loading to the characteristics of the dope suspension and flat sheet. While the last part reports the development of dual-layer hollow fibers using the modified electrolyte. This includes the study on the

Figure 1.4 Overall Thesis Structure
REFERENCES

24. Fagg, D. P., Kharton, V. V. and Frade, J. R. P-Type Electronic Transport in Ce$_{0.8}$Gd$_{0.2}$O$_{2-\delta}$: The Effect of Transition Metal Oxide Sintering Aids. *J. Electroceramics* 2002, 9: 199–207.

34. Le, S., Zhu, S., Zhu, X. and Sun, K. Densification of Sm0.2Ce0.8O1.9 with the addition of lithium oxide as sintering aid. *J. Power Sources* 2013, 222: 367–372.
43. Li, K. *Ceramic Membranes for Separation and Reaction*, England: John Wiley & Sons Ltd. 2007.

77. Sumi, H., Yamaguchi, T., Hamamoto, K., Suzuki, T. and Fujishiro, Y. High performance of La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_3$–Ce$_{0.9}$Gd$_{0.1}$O$_{1.95}$ nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells. *J. Power Sources* 2013, 226: 354–358.

85. Sumi, H., Kennouche, D., Yakal-kremski, K., Suzuki, T., Barnett, S. A., Miller, D. J., Yamaguchi, T., Hamamoto, K. and Fujishiro, Y. Electrochemical and microstructural properties of Ni−(Y2O3)0.08(ZrO2)0.92−(Ce0.9Gd0.1)O1.95 anode-supported microtubular solid oxide fuel cells. *Solid State Ionics* 2016, 285: 227–233.

95. Liu, S., Tan, X., Li, K. and Hughes, R. Preparation and characterisation of SrCe0.95Yb0.05O 2.975 hollow fibre membranes. *J. Membr. Sci.* 2001, 193: 249–260.

99. Liu, Y. and Li, K. Preparation of SrCe_{0.95}Yb_{0.05}O_{3−α} hollow fibre membranes: Study on sintering processes. J. Memb. Sci. 2005, 259(1-2): 47–54.

112. Zhao, F., Jin, C., Yang, C., Wang, S. and Chen, F. Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr$_{0.1}$Ce$_{0.7}$Y$_{0.1}$Yb$_{0.1}$O$_{3-δ}$ electrolyte. *J. Power Sources* 2011, 196(2): 688–691.

129. Yang, C., Ren, C., Yu, L. and Jin, C. High performance intermediate temperature micro-tubular SOFCs with Ba$_{0.9}$Co$_{0.7}$Fe$_{0.2}$Nb$_{0.1}$O$_{3-\delta}$ as cathode. *Int. J. Hydrogen Energy* 2013, 38(35): 15348–15353.

176. Ge, L., Li, R., He, S., Chen, H. and Guo, L. Enhanced grain-boundary conduction in polycrystalline Ce$_{0.8}$Gd$_{0.2}$O$_{1.9}$ by zinc oxide doping: Scavenging of resistive impurities. J. Power Sources 2013, 230: 161–168.
180. Seo, S. W., Park, M. W. and Lee, J. S. Effects of Lithium Oxide Addition on Sintering Behavior and Electrical Conductivity of Ce$_{0.8}$Gd$_{0.2}$O$_{1.9}$ Ceramics Prepared by Commercial Powders. J. Nanosci. Nanotechnol. 2016, 16(5): 5320–5323.
185. Li, S., Xian, C., Yang, K., Sun, C., Wang, Z. and Chen, L. Feasibility and mechanism of lithium oxide as sintering aid for $\text{Ce}_{0.8}\text{Sm}_{0.2}\text{O}\delta$ electrolyte. *J. Power Sources* 2012, 205: 57–62.

gel synthesis and characterization of LiNO$_3$–Al$_2$O$_3$ composite solid electrolyte.

nitrates supported on oxides for the diesel soot combustion. Deactivation by

C. S., Society, T. E. Atomic Layer Deposition of LiOH and Li$_2$CO$_3$ Using

220. Rappoport, I. M. Z. *The chemistry of organolithium compounds Part 1*, Z.

221. Prasertthdam, P., Phungphadung, J. and Tanakulrungsank, W. Effect of
crystallite size and calcination temperature on the thermal stability of single

222. Zhang, W., Kuhn, L. T., Joergensen, P. S., Sudireddy, B. R., Bentzen, J. J.,
Bernuy-Lopez, C., Veltze, S. and Ramos, T. Instability and growth of
nanoscale Ce$_{0.8}$Gd$_{0.2}$O$_{1.9}$/NiO infiltrate in Sr$_{0.94}$Ti$_{0.9}$Nb$_{0.1}$O$_3$-Zr$_{0.84}$Y$_{0.16}$O$_{1.92}$

Ceria co-doping: synergistic or average effect. *Phys. Chem. Chem. Phys.* 2014,
16(18): 8320–8331.

fabrication technique of hollow fibre support for micro-tubular solid oxide fuel

225. Kingsbury, B. F. K. and Li, K. A morphological study of ceramic hollow fibre

Membranes: A Perspective on Multifunctional Catalytic Membrane Reactor,

227. Yu, F., Xiao, J., Lei, L., Cai, W., Zhang, Y., Liu, J. and Liu, M. Effects of
doping alumina on the electrical and sintering performances of yttrium-

