THE EVALUATION ON RISK FACTORS FOR PUBLIC-PRIVATE PARTNERING PROJECT IN PERAK CONSTRUCTION INDUSTRY

SYARIFAH NUR HUSNA AIMAN BINTI SYED MOKHTAR

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JANUARY 2019
THANKS TO ALLAH ALMIGHTY FOR ESTABLISHING ME TO COMPLETE THIS DISSERTATION. THE WRITING AND COMPLETION OF THIS DISSERTATION WOULD NOT HAVE BEEN POSSIBLE WITHOUT THE ASSISTANCE, SUPPORT, AND GUIDANCE OF A FEW VERY SPECIAL PEOPLE IN MY LIFE.

FIRST OF ALL, I WOULD LIKE TO EXPRESS MY GRATITUDE TO ASSOCIATE PROFESSOR DR NORHAZILAN B MD. NOOR, WHO ENCOURAGED AND BELIEVED IN ME TO PURSUE THIS DISSERTATION. I AM EXTREMELY GRATEFUL AND INDEBTED TO HIM FOR HIS EXPERTISE, SINCERE AND VALUABLE GUIDANCE AND ENCOURAGEMENT EXTENDED TO ME.

I WOULD LIKE TO THANK TO ASSOCIATE PROFESSOR DR LIBRIATI ZADRASTI WHO GUIDE ME WITH KNOWLEDGE AND GIVE MORAL SUPPORT TO COMPLETE THIS DISSERTATION.

I ALSO THANKS TO ALL MY COLLEAGUES, PANELS OF EXPERT AND OTHERS WHO HAVE PROVIDED ME ASSISTANCE, PARTICIPATION AND SUPPORT.

MY DEEPEST APPRECIATION BELONGS TO MY PARENTS, SYED MOKHTAR SYED IDDRIS AND WAN ZABIDAH MIOR YUNUS, BELOVED HUSBAND, AHMAD JUFRI, AND MY KIDS, NUR MAISARAH, MIOR AHMAD JAZLAN AND MIOR AHAMD JAZMI FOR THEIR PATIENCE AND UNDERSTANDING.
ABSTRACT

The purpose of this paper is to evaluate the risk factors of Public-Private Partnering (PPP) Project in the state of Perak, Malaysia. The existence of these risk factors for application of PPP projects would help the joint-venture projects between public and public sector, especially in Perak, to be able to investigate their current PPP projects practices and how they could be improved. Risk factors are identified by extensive literature review from previous study. Then, Delphi method is used to identify significant risk factors in Perak PPP practices and Analytical Hierarchy Process (AHP) approach is used for determining the ranking of risks for impact level of PPP projects. The Delphi method is employed by gather data from experts involve in PPP projects in Perak and the AHP approach is based on pair-wise comparison from expert’s judgement between each significant risk factor. The series of rounds that took place during the Delphi method increased the length of time required for data collection and the follow-up process. On the basis of the consideration given, the limited resources included time, financial resources, and technical availability for this study, small sample sizes has been used. The ranking of risk impact level for PPP projects could be useful for stakeholders involved in PPP project to create action plans to reduce risk, save cost and time, and increase quality of output for PPP projects. Based on the study, 40 risk factors have been identified and 11 factors is have been validated as significant risk factors. The finding of this study showed third party delay risk is the most important factors for impact level of risk in Perak PPP projects.
ABSTRAK

TABLE OF CONTENTS

TITLE

DECLARATION ... ii
ACKNOWLEDGEMENT iii
ABSTRACT ... iv
ABSTRAK .. v
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES xi
LIST OF ABBREVIATION xii
LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1
1.2 Problem Statement 2
1.3 Research Aim and Objectives 3
1.4 Scope of Work 4
1.5 Significance of Study 4

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction to PPP Model 7
2.2 Advantages and Disadvantages of PPP 9
2.3 Background of PPP in Malaysia 11
2.4 PPP Model in Malaysia 13
2.5 PPP Project in Perak 14
2.6 Risk management
 2.6.1 Risk Management in PPP Projects 18
 2.6.2 Risk Identification 21
 2.6.3 Risk Assessment in PPP Projects 24

2.7 Delphi method 26

2.8 Analytical Hierarchy Process 30

CHAPTER 3 RESEARCH METHODOLOGY 32

3.1 Introduction 32

3.2 Flow Chart of Research Methodology 33

3.3 Design of Questionnaire Survey 35
 3.3.1 First Round Questionnaire 35
 3.3.2 Second Round Questionnaire 37
 3.3.3 Third Round Questionnaire 37

3.4 Risk Ranking using AHP 38

3.5 Data Collection 40

3.6 Data Analysis 42
 3.6.1 Frequency Analysis 43
 3.6.2 Mean Index Analysis 43
 3.6.3 Risk Analysis Matrix 44
 3.6.4 Kendall’s Coefficient of Concordance 46
 3.6.5 Analytical Hierarchy Process 47

CHAPTER 4 RESULTS AND DISCUSSION 51

4.1 Introduction 51

4.2 Questionnaire Return Rates 52
4.3 Section A: Respondent Background Analysis 52
4.4 Section B: Determination of
 Significant Risks 56
 4.4.1 First Round Delphi 56
 4.4.2 Second Round Delphi 64
 4.4.3 Third Round Delphi 71

4.5 Section C: Risk Ranking of Impact Level in
 Perak PPP Project 75
 4.5.1 Risk Hierarchy Framework Model 75
 4.5.2 Data Transformation 76
 4.5.3 Risk Ranking Analysis 80

CHAPTER 5 CONCLUSION AND RECOMMENDATION 85
 5.1 Conclusion 85
 5.2 Identify the General Risk Factors 85
 5.3 Determine the Significant Risk Factor in Perak
 PPP Projects 86
 5.4 Risk Ranking of Risk Impact Level 86
 5.5 Recommendations 87

REFERENCES 88
APPENDICES A-D 93
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Types of PPP Projects (Source: UNESCAP, 2011)</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Type of Risks in PPP projects</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Risk Score Matrices in Risk Rating (DOSH, 2008)</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Relevant Literature Review on Delphi Method for Risk Analysis</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Minimum Requirement of Delphi Method Implementation</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Different application of AHP approach in previous study</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>5-Point Likert Scale</td>
<td>36</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Fundamental Comparison Scale</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Data Transformation based on Various Combinations</td>
<td>40</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Risk Analysis Matrix (DOSH, 2008)</td>
<td>45</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Frequency and Percentage of Type of Firms</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Frequency and Percentage of Year of experience in PPP Project</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Frequency and Percentage of Type of Project Involved</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Frequency and Percentage Panels Roles</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>First Round Results for Frequency of Occurrence</td>
<td>58</td>
</tr>
</tbody>
</table>
Table 4.6 First Round Results for Impact Level of Risks
Table 4.7 First Round Risk Score
Table 4.8 Second Round Results for Frequency of Occurrence
Table 4.9 Second Round Results for Impact Level of Risk
Table 4.10 Second Round Risk Score
Table 4.11 Third Round Results for Frequency of Occurrence
Table 4.12 Third Round Survey Results for Impact Level of Risks
Table 4.13 Third Round Risk Score
Table 4.14 Kendall’s coefficient of concordance
Table 4.15 Raw Data for Risk Impact Level
Table 4.16 SUPER DECISION Input Data for Risk Impact Level
Table 4.17 Risk Priority Vector for Both Sector
Table 4.18 Risk Priority Vector for Public Sector
Table 4.19 Risk Priority Vector for Private Sector
Table 4.20 Ranking of Risk Impact Level
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>PPP/PFI Evaluation in Malaysia Source</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Phase of Risk</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Framework of the Risk Management Process</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Research Methodology Stages</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Data Collection Methodology Flow Diagram</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Sample of Questionnaire in SUPER DECISION software</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Questionnaire Matrix</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Consistency Ratio</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Types of panel’s roles</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>AHP Hierarchy Model</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Example Data Key-in for Questionnaire</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Public Sector Risk Ranking for Level of Impact</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Private Sector Ranking for Level of Impact</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Both Sector Risk Ranking for Level of Impact</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

AHP - Analytical Hierarchy Process
BLT - Build-Lease-Transfer
BOO - Build-Operate-Own regression
BOOT - Build-Operate-Own-Transfer
BOT - Build-Operate-Transfer
BROT - Build-Rahabilitate-Operate-Transfer
CR - Consistency Ratio
DBFO - Design-Build-Finance-Operate
DOSH - Department of Occupational Safety and Health
EPU - Economic Planning Unit
EU - European Union guidelines
KLIA - Kuala Lumpur International Airport
PFI - Public Finance Initiative
PMI - Project Management Institute
PPP - Public Private Partnering
US - United State
UKAS - Unit Kerjasama Awam Swasta
VFM - Value for Money
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Questionnaires on Identification of Significant Risk (Round 1)</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Questionnaires on Identification of Significant Risk (Round 2)</td>
<td>100</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Questionnaires on Identification of Significant Risk (Round 3)</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Risk Factor Description</td>
<td>109</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Public-Private Partnerships (PPP) and other forms of cooperation between the private sector and local and national governments are used frequently around the world to develop and expand energy and utility networks and services, extend telecommunications and transportation systems, construct and operate water, sewer, and waste treatment facilities, and provide health, education and other services (Dennis and Max, 1996). In many developing countries, governments are also using PPP to finance and manage toll expressways, airports, shipping ports, and railroads and to reduce environmental pollution, build low-cost housing, and develop ecotourism (Rivera, Brenes and Quijandria, 1998). Recently, government is increasing the number of PPP projects to financing, maintaining infrastructure and providing public service that are facing financial challenges. In the 10th Malaysian plan, government shall establish more PPP projects to promote the economic growth.
Accordingly, the Malaysian government defined 52 new PPP projects worth RM63 billion for 2011–2020 (Leong, 2010). Although PPPs have many benefits, the system have some drawbacks related to complexities in planning, arrangement in relation to documentation, the dynamic nature of documentation, capital budget and taxation, control, monitoring, performance, politics and policies (Grimsey and Lewis, 2002). Most of the risks arise from these types of complexities in PPP projects (Heravi and Hajihosseini, 2011). Therefore, risk management is essential for construction projects especially projects that are based on PPP concept (Lam et al., 2007).

1.2 Problem Statement

Partnerships are exposed to various kinds of risk due to its complexity and unique in nature. Several PPP projects have failed to achieve budget, deadlines, and quality which most of these projects have been exposed to high risks (Thomas et al., 2003). Malaysia’s percentage of PPP project failures is the second highest in East Asia with 22 failed projects. The number of PPP projects that have failed in Sub-Saharan Africa, South Asian, Europe and Central Asia were 50, 13 and 36 respectively (World Bank, 2013). It is worth emphasizing that risks may have direct impact and indirect impact on costs. For example, private sector will attempt to increase its
financial gains from a project, hence neglecting some of quality features of a service such as materials, grades and defects. There are many different types of risk that PPP’s project may face but there are a few number of construction practitioners in Malaysia who implementing risk management (Yusuhan et.al, 2000). Thus, many stakeholders failed to detect the significant risk and evaluate risk accordingly to suit the project needs, cost and time management.

1.3 Research Aim and Objectives

The main aim of this research is to evaluate risk factor that affected PPP projects in the states of Perak. This study focuses on three main (3) objectives, which are:

i. To identify the general risk factors relevant in Malaysia PPP projects in construction industry.

ii. To determine the significant risk factors in Perak PPP projects using Delphi Method.

iii. To rank the significant risk impact level using Analytical Hierarchy Analysis (AHP).
1.4 Scope of Work

This research is focus on identification of the risk factors that is valid to the construction industry practice in Malaysia. Thus, the significant risks is determine and rank accordingly between the private and public sector in Perak. The limitation of this research are it only investigates certain areas of risk factors in PPP’s project, there is little known about the driven risk factor and ranking in local state especially in Perak and project risk ranking may have consequences in form of time or range such that it is difficult to make decisions without considering those factors. There are also limited numbers of construction firms, consultants that involved in Perak PPP project hence, limited sample of data are use in this study. This study was carried out by using questionnaire survey and interviews. Therefore, in order to reduce errors and increase accuracy, a qualitative judgment of experts has been converted to a quantitative model by using Delphi Method and AHP approach.

1.5 Significance of Study

As explained in earlier section, this study is important in order to give understanding and assist on identifying and evaluating significant risk impact level in PPP projects especially through the
whole life cycle of the projects. The findings also ensure the long-term partnership between private and public sector. It also give important impact towards the public and private sector in construction industry by contribute additional knowledge on risks in Perak PPP projects. Moreover, this study may help private and public sector to highlight major risks factor and problem in earlier stage of construction to avoid disputes between stakeholders, saving time and cost of a project. This research may help stakeholders to develop a better decision making model using risk management tools to evaluate risks. Finally, the results will definitely help to increase public policy improvement towards partnering project and carry out PPP contract to their risk perceptions.
REFERENCES

40. Markman, C. / Technological Forecasting & Social Change 80 (2013) 1815–1833