SYNTHESIS AND CHARACTERIZATION OF MOLYBDENUM CARBIDE FROM OIL PALM FROND BASED ACTIVATED CARBON FOR CARBON DIOXIDE REDUCTION

MOHD KHAIRUL ASYRAF B. AMAT MUSTAJAB

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2017
For my beloved family & friends.........

To my beloved family that never stopped supporting, guiding and believe in countless ways, both direct and indirect. I was going to start listing them all, but realized they are just too many to do that justice - so please accept the fact that you are all mentioned in my daily prayer of thanks to a loving ALLAH s.w.t. Who will convey that thanks in His own way back to you.
ACKNOWLEDGEMENT

In the name of Allah, the most gracious and the most merciful

This thesis may possibly not be completed with the help of others. Firstly, I would like to express my deepest appreciation to my supervisor, Prof. Dr. Abdul Rahim Yacob for the support, guidance and enthusiasm. His tireless advice, insightful criticisms and patient encouragement have facilitated me to accomplish my mission effectively.

Beside that, I would also approach to thank to all the lecturers and staff in Department of Chemistry, especially to Physical Chemistry Lab II and Ibnusina Institute for the diligent advices, suggestions and solutions right the way through this research.

I would also like to show my appreciation to my research team, including postgraduate and undergraduate students, in favor of their supports, ideas and be of assistances to me in order to complete my project. Special thanks to all my colleagues for all those times, ears, advices and efforts. Before I disregard, thanks for MOSTI for the financial support through National Science Fellowship and UTM GUP (Q.J.130000.2526.04H98).

Last but certainly not least, I would like to express my gratitude to my dearly loved family members, my father, Mr. Amat Mustajab B. Omar, my mother, Mrs. Latifah Bte. Badri, my lovely wife, Nor Suryani Zabidi, my daughter, Nur Asyrani Humairah and my siblings, Mohd Khairul Lufti, Khairul Nizawati, Nurul Nadia and Muhammad Amirul Fitri. Thanks for all the love, faith, support, motivation and encouragement that help me to keep on reaching my dreams.
Energy-efficient technique is one of the vital keys to sustainable development in manufacturing processes. Microwave technique is an attractive approach in manufacturing as this technique offers several advantages such as rapid process and low energy requirement. In this study, microwave induced technique was applied to the preparation of activated carbons and molybdenum carbides. The activated carbons were prepared using oil palm fronds and activated using potassium hydroxide and phosphoric acid solutions at different concentrations. The products were then characterized using Fourier transform infrared spectroscopy (FTIR), nitrogen gas adsorption analysis and scanning electron microscopy (SEM). The results indicated that the highest surface area obtained by activation using phosphoric acid was 638.14 m²/g. However, the activated carbons prepared using a potassium hydroxide showed low surface areas for all samples. In the production of molybdenum carbide and potassium doped molybdenum carbide via microwave induced alloying, the prepared activated carbons were mixed with a 1 M molybdenum solution followed by the microwave-induced technique. All the prepared samples were chemically characterized using X-ray diffraction analysis (XRD), nitrogen gas adsorption analysis, SEM, energy dispersive X-ray (EDX), ammonia-temperature-programmed desorption analysis (TPD-NH₃), acidic titration method and electron spin resonance (ESR) spectroscopy. XRD analysis indicated that the perfect ratio for the preparation of molybdenum carbide is 2 Mo: 7 C. Nitrogen gas analysis showed that molybdenum carbide and potassium doped molybdenum carbide had surface areas of 95.0537 and 61.9302 m²/g, respectively. The ESR spectroscopy indicated the presence of a singlet peak at g-value of 1.9723 in the ESR spectra of potassium doped molybdenum carbide; this suggested that an electron was donated from potassium to the surface of molybdenum carbide. TPD-NH₃ indicated the presence of weak, moderate and strong acid sites for the molybdenum carbide and potassium doped molybdenum carbide. However, the addition of potassium decreased the amount of acid sites for the molybdenum carbide. The prepared carbides were evaluated as catalysts in the reduction reactions of carbon dioxide that were conducted using in-house modified reactor. The product was then characterized using FTIR. In the catalytic application, the molybdenum carbide showed a higher activity compared to the potassium doped molybdenum carbide. This was probably caused by the potassium moiety which poisoned the reaction while blocking the active sites. To better understand the reaction, kinetic analysis was carried out for the hydrogenation of carbon dioxide via molybdenum carbide. Results suggested an optimum temperature of 450°C, second order reaction, and the activation energy of 34.27 kJ/mol. In addition, thermodynamic parameters were also calculated using the Eyring equation and it was revealed that the values of ΔH‡, ΔS‡ and ΔG‡ were +40.04 kJ/mol, -1478.4 J/mol K and +1108.7 kJ/mol, respectively. These parameters proved that this reaction is not spontaneous and it is endothermic in nature with associative reaction mechanism.
ABSTRAK

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xx
LIST OF APPENDICES xxi

1 INTRODUCTION 1
1.1 Background of research 1
1.2 Research Problems 4
1.3 Research Objectives 4
1.4 Research Scope 5
1.5 Significant of Research 6

2 LITERATURE REVIEW 8
2.1 Activated Carbon 8
2.2 Transition Metal Carbides 12
2.3 Microwave energy for production of material 15
2.4 Carbon Dioxide as Valuable Resources 18
 2.4.1 Introduction 18
2.4.2 Reverse Water-Gas Shift Reaction

20

2.5 Catalytic Application of Molybdenum Carbide

24

2.6 Effect of Metal Promoter to The Activity of The Catalyst

26

2.7 Kinetic and Thermodynamic Analysis of The Reaction

31

3 EXPERIMENTAL

36

3.1 Introduction

36

3.2 Materials

36

3.3 Experiments Section

38

- **3.3.1 Preparation of Activated Carbon from Oil Palm frond via Microwave Induced Heating.**

- **3.3.1.1 Preparation of Activated Carbon Using Waste Oil Palm Frond Activated Using Potassium Hydroxide**

- **3.3.1.2 Preparation of Activated Carbon Using Waste Oil Palm Frond activated Using Phosphoric Acid**

- **3.3.2 Preparation of Molybdenum Carbide via Microwave Induced Alloying (MIA)**

- **3.3.3 Preparation of Potassium Doped Molybdenum Carbide**

3.4 Characterization Techniques for the Raw Oil Palm Frond, Prepared Activated Carbon, Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide

43

3.5 Catalytic Activities of The Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide for the Carbon Dioxide Reduction

46
4 PREPARATION AND CHARACTERIZATION OF ACTIVATED CARBON AND POTASSIUM DOPED ACTIVATED CARBON FROM WASTES OIL PALM FROND VIA MICROWAVE INDUCED ACTIVATION 49

4.1 Introduction 49

4.2 Characterization of Waste Oil Palm Frond Activated Carbon prepared by Microwave Induced Potassium Hydroxide activation 49

4.2.1 Thermogravimetric Analysis of Raw Oil Palm Frond 50

4.2.2 Analysis of Functional Groups via Fourier Transform Infrared Spectroscopy (FTIR) 52

4.2.3 Determination of Surface Area of The Prepared Activated Carbon via Nitrogen gas Adsorption Analysis 56

4.2.4 Analysis of Surface Morphology via Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX) 57

4.3 Characterization of Waste Oil Palm Frond Activated Carbon prepared by Microwave Induced Phosphoric acid Activation 65

4.3.1 Identification of Organic Functional Groups In The Raw Oil Palm Frond and Produced Activated Carbon by Fourier Transform Infrared (FT-IR) 65

4.3.2 Determination of Surface Area of The Prepared Activated Carbon via Nitrogen gas Adsorption Analysis 68

4.3.3 Surface Morphology Characterization of The Prepared Activated Carbon via Field Emission Scanning Electron Microscopy 72

4.4 Conclusion 74
5 PREPARATION AND CHARACTERIZATION OF MOLYBDENUM CARBIDE AND POTASSIUM DOPED MOLYBDENUM CARBIDE VIA MICROWAVE INDUCED ALLOYING

5.1 Introduction

5.2 Preparation of Molybdenum Carbide via Microwave Induced Alloying

5.2.1 Structure Characterization for The Prepared Molybdenum Carbide at Different Ratio of Molybdenum by X-ray Diffraction Analysis

5.2.2 Structure Characterization for The Prepared Molybdenum Carbide at Different Ratio of Carbon by X-ray Diffraction Analysis

5.2.3 Surface Morphology Characterization by Scanning Electron Microscope

5.3 Preparation of Potassium Doped Molybdenum Carbide

5.4 Analysis of Surface Properties for Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide via Nitrogen gas Adsorption Analysis

5.5 Characterization of Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide via Electron Spin Resonance Spectrometer

5.6 Investigation of Acidity Properties of The Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide

5.7 Conclusion

6 APPLICATION OF THE PREPARED MOLYBDENUM CARBIDE AND POTASSIUM DOPED MOLYBDENUM CARBIDE AS AN HETEROGENEOUS CATALYST FOR HYDROGENATION OF CARBON DIOXIDE

6.1 Introduction
6.2 Hydrogenation of Carbon Dioxide via the Prepared Molybdenum Carbide and Potassium Doped Molybdenum Carbide

6.2.1 The Activity and Effectiveness of the Prepared Molybdenum Carbide for the Hydrogenation of Carbon Dioxide

6.2.2 The Activity and Effectiveness of the Prepared Potassium Doped Molybdenum Carbide for The Hydrogenation of Carbon Dioxide

6.2.3 Proposed Reaction Mechanism and Schematic Model of Mechanism for the Carbon Dioxide Hydrogenation via the Prepared Molybdenum Carbide

6.2.4 Reuseability of the Prepared Molybdenum Carbide as a Catalyst in the Hydrogenation of Carbon Dioxide

6.3 Analysis of Kinetic for the Hydrogenation of Carbon Dioxide via the Prepared Molybdenum Carbide

6.3.1 The Effect of Time on the Hydrogenation of Carbon Dioxide, Catalyzed by the Prepared Molybdenum Carbide

6.3.2 Kinetic Analysis of Hydrogenation of Carbon Dioxide via the Prepared Molybdenum Carbide

6.4 Thermodynamic Analysis of Hydrogenation of Carbon Dioxide via the Prepared Molybdenum Carbide

6.5 Analysis of Kinetic for the Hydrogenation of Carbon Dioxide, Catalyzed by Potassium Doped Molybdenum Carbide

6.6 Conclusion
7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions 135
7.2 Recommendations 138

REFERENCES 139

Appendices A-C 169-172
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>List of pores with their specific measurement</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>List of the published papers with specific molybdenum sources</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>List of literature papers regarding the application of microwave</td>
<td>17-18</td>
</tr>
<tr>
<td></td>
<td>heating technique</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>List of barriers, strategic goals and industrial opportunities for</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>utilization of CO₂</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Lists of published papers regarding the RWGS reaction</td>
<td>21-23</td>
</tr>
<tr>
<td>2.6</td>
<td>Lists of published papers regarding the molybdenum carbide</td>
<td>25-26</td>
</tr>
<tr>
<td></td>
<td>as a catalyst</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Lists of published papers regarding the doped-catalyst</td>
<td>28-30</td>
</tr>
<tr>
<td>2.8</td>
<td>Lists of published papers regarding kinetic approach for the</td>
<td>31-33</td>
</tr>
<tr>
<td></td>
<td>reaction</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>The equation with their liner form and list of constants</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Sample notations for the prepared potassium doped</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>activated carbon</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Sample notations for the prepared activated carbon</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>List of the ratio for preparation of molybdenum carbide</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>List all the absorption peaks with a specific functional group</td>
<td>55-56</td>
</tr>
<tr>
<td></td>
<td>for raw oil-palm frond and prepared activated carbons</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Elemental analysis via EDX for raw oil palm frond and the</td>
<td>64-65</td>
</tr>
<tr>
<td></td>
<td>prepared samples</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>List all the absorption peaks with a specific functional group</td>
<td>68-69</td>
</tr>
<tr>
<td></td>
<td>for raw oil-palm frond and prepared activated carbons</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.1</td>
<td>Elemental analysis via energy dispersive X-ray for K-Mo$_2$C</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Surface properties of Mo$_2$C and KMo$_2$C</td>
<td>89</td>
</tr>
<tr>
<td>5.3</td>
<td>Result of TPD-NH$_3$ for molybdenum carbide and potassium doped molybdenum carbide</td>
<td>99</td>
</tr>
<tr>
<td>5.4</td>
<td>The acidic properties of the catalysts</td>
<td>101</td>
</tr>
<tr>
<td>6.1</td>
<td>Lists of published papers regarding deactivation of catalyst by alkali metal</td>
<td>113</td>
</tr>
<tr>
<td>6.2</td>
<td>Reaction order and specific integrated kinetic equation for this reaction</td>
<td>123</td>
</tr>
<tr>
<td>6.3</td>
<td>Value of thermodynamic parameters for this analysis</td>
<td>131</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of research activities</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>The schematic diagram of modified microwave oven</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Sample tube for ESR investigation</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Arrangement of catalyst in a glass tube</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic diagram for the in-house built reactors</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>TGA/DTG curves of raw oil palm frond</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>FTIR spectra for ROPF, C-OPF, AC-COM, C1%, C2%, C3%, C4%, C5%, C6%, C7%, C8%, C9% and C10% respectively</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Single point BET surface area of ROPF, C-OPF, prepared carbons and commercial activated carbon</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>FESEM Micrograph for ROPF (1000x magnification)</td>
<td>59</td>
</tr>
<tr>
<td>4.5</td>
<td>FESEM Micrograph for C-OPF (1000x magnification)</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>FESEM Micrograph for C1% with magnification of 2000x</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>FESEM Micrograph for C2% with magnification of 2000x</td>
<td>60</td>
</tr>
<tr>
<td>4.8</td>
<td>FESEM Micrograph for C3% with magnification of 2000x</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>FESEM Micrograph for C4% with magnification of 2000x</td>
<td>61</td>
</tr>
<tr>
<td>4.10</td>
<td>FESEM Micrograph for C5% with magnification of 2000x</td>
<td>61</td>
</tr>
<tr>
<td>4.11</td>
<td>FESEM Micrograph for C6% with magnification of 2000x</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>FESEM Micrograph for C7% with magnification of 2000x</td>
<td>62</td>
</tr>
<tr>
<td>4.13</td>
<td>FESEM Micrograph for C8% with magnification of 2000x</td>
<td>62</td>
</tr>
<tr>
<td>4.14</td>
<td>FESEM Micrograph for C9% with magnification of 2000x</td>
<td>63</td>
</tr>
<tr>
<td>4.15</td>
<td>FESEM Micrograph for C10% with magnification of 2000x</td>
<td>63</td>
</tr>
<tr>
<td>4.16</td>
<td>FTIR spectra for ROPF, AC-P10%, AC-P20%, AC-P30%, AC-P40%, AC-P50%, AC-P60%, AC-P70% and AC-P80% respectively</td>
<td>67</td>
</tr>
</tbody>
</table>
4.17 Single point BET surface area of oil palm frond (OPF), prepared activated carbons and commercial activated carbon

4.18 Adsorption-desorption isotherms plot for AC-P60%

4.19 BJH Pore distribution plot for AC-P60%

4.20 FESEM Micrograph for oil-palm frond with magnification of 2500x

4.21 FESEM Micrograph for AC-P40% with magnification of 5000x

4.22 FESEM Micrograph for AC-P60% with magnification of 5000x

4.23 FESEM Micrograph for AC-P70% with magnification of 5000x

5.1 XRD patterns for a) 0.5:7, b) 1.0:7, c) 1.5:7, d) 2.0:7, e) 2.5:7 and f) 3.0:7 prepared molybdenum carbides respectively

5.2 Peak analysis for a) 23.3 ° (orthorhombic MoO3), b) 25.9 ° (tетragonal MoO2) and c) 39.7 ° (hexagonal Mo2C)

5.3 The XRD diffractograms for synthesized ratio of a) 2:3, b) 2:4, c) 2:5, and d) 2:6

5.4 The XRD diffractograms for synthesized ratio of a) 2:7, b) 2:8, c) 2:9 and d) 2:10

5.5 Peak analysis for a) 23.3 ° (orthorhombic MoO3), b) 25.9 ° (tetragonal MoO2) and c) 39.7 ° (hexagonal Mo2C)

5.6 SEM Micrograph of prepared Mo2C at ratio 2.0:7 at 500x magnification

5.7 SEM Micrograph of prepared Mo2C at ratio 2.0:7 at 4000x magnification

5.8 Element mapping for prepared Mo2C, which are (a) molybdenum and (b) carbon

5.9 XRD diffractogram for potassium doped molybdenum carbide

5.10 The SEM micrograph for the potassium doped molybdenum carbide

5.11 Adsorption-desorption isotherms of nitrogen gas for (a) K-Mo2C and (b) Mo2C

5.12 DFT Pore Distribution plot for Mo2C

5.13 DFT Pore Distribution plot for K-Mo2C

5.14 BJH Pore Distribution plot for Mo2C

5.15 BJH Pore Distribution plot for K-Mo2C
5.16 ESR spectra of (a) non doped molybdenum carbide and (b) potassium doped molybdenum carbide

5.17 Proposed model for interaction of the donated electron from potassium on Mo₂C surface

5.18 Change of ESR signal for potassium doped molybdenum carbide within 30 minutes of UV irradiation

5.19 Proposed model for interaction of the donated electron from potassium to hydrogen molecule at surface of Mo₂C

5.20 TPD-NH₃ spectra for (a) Mo₂C and (b) K-Mo₂C

6.1 Infrared spectra of the collected products at temperatures (a) 100°C, (b) 150°C, (c) 200°C and (d) 250°C respectively

6.2 Infrared spectra of the collected products at temperatures (a) 300°C, (b) 350°C, (c) 400°C, (d) 450°C and 500°C respectively

6.3 Percentage conversion of carbon dioxide at different temperature for Mo₂C catalyst

6.4 Infrared spectra of the collected products at temperatures (a) 100°C, (b) 150°C, (c) 200°C and (d) 250°C respectively

6.5 Infrared spectra of the collected products at temperatures (a) 300°C, (b) 350°C, (c) 400°C, (d) 450°C and (e) 500°C respectively

6.6 Percentage conversion of carbon dioxide at different temperature for K-Mo₂C catalyst

6.7 The proposed models to represent the poisoning effect of potassium in the molybdenum carbide, which are (a) reducing surface area and (b) donated electrons occupied the oxygen-vacancy cavity

6.8 The model of schematic mechanism for this reaction

6.9 The reusability of the prepared molybdenum carbide in the hydrogenation of carbon dioxide at temperature 350°C

6.10 The reusability of the prepared molybdenum carbide in the hydrogenation of carbon dioxide at temperature 400°C

6.11 The reusability of the prepared molybdenum carbide in the hydrogenation of carbon dioxide at temperature 450°C

6.12 Percentage conversion of carbon dioxide catalyzed by prepared
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.13</td>
<td>Zero order graph</td>
<td>123</td>
</tr>
<tr>
<td>6.14</td>
<td>First order graph</td>
<td>124</td>
</tr>
<tr>
<td>6.15</td>
<td>Second order graph</td>
<td>124</td>
</tr>
<tr>
<td>6.16</td>
<td>Graph of Arrhenius Law for zero order reaction</td>
<td>126</td>
</tr>
<tr>
<td>6.17</td>
<td>Graph of Arrhenius Law for first order reaction</td>
<td>126</td>
</tr>
<tr>
<td>6.18</td>
<td>Graph of Arrhenius Law for second order reaction</td>
<td>126</td>
</tr>
<tr>
<td>6.19</td>
<td>A model of an activation energy profile for this reaction</td>
<td>127</td>
</tr>
<tr>
<td>6.20</td>
<td>Graph of Eyring equation for zero order reaction</td>
<td>128</td>
</tr>
<tr>
<td>6.21</td>
<td>Graph of Eyring equation for first order reaction</td>
<td>129</td>
</tr>
<tr>
<td>6.22</td>
<td>Graph of Eyring equation for second order reaction</td>
<td>129</td>
</tr>
<tr>
<td>6.23</td>
<td>Graph of van’t Hoff for zero order reaction</td>
<td>129</td>
</tr>
<tr>
<td>6.24</td>
<td>Graph of van’t Hoff for first order reaction</td>
<td>130</td>
</tr>
<tr>
<td>6.25</td>
<td>Graph of van’t Hoff for second order reaction</td>
<td>130</td>
</tr>
<tr>
<td>6.26</td>
<td>Comparison of catalyst's activity towards time of reaction</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>at temperature 400°C</td>
<td></td>
</tr>
<tr>
<td>6.27</td>
<td>Analysis of kinetic for the hydrogenation of carbon dioxide</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>catalyzed by the prepared Mo$_2$C and K-Mo$_2$C</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

°C - degree Celsius
μm - micrometer
nm - nanometer
cm - centimetre
g - gram
ID - internal diameter
K - Kelvin
mL - milliliter
θ - Half angle of diffraction beam
λ - Wavelength
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetry analysis</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray analysis</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transformation Infrared</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron Spin Resonance</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature Programmed Desorption</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>NA</td>
<td>nitrogen adsorption</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium Bromide</td>
</tr>
<tr>
<td>TMC</td>
<td>Transition Metal Carbide</td>
</tr>
<tr>
<td>MIA</td>
<td>Microwave Induced Alloying</td>
</tr>
<tr>
<td>AHM</td>
<td>Ammonium Hepta Molybdate</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>XRD Peaks assignment for all prepared molybdenum carbide</td>
<td>169</td>
</tr>
<tr>
<td>B</td>
<td>ESR spectra for UV irradiation of potassium doped molybdenum carbide</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(Subsection 5.5, Figure 5.18)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Calibration curve for prediction of mole of carbon monoxide</td>
<td>172</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Background of Research

The future of the materials, manufacturing technology depends on three major ideas; energy efficiency, sustainability and economic viability. Among of these ideas, energy efficiency is the top priority for the growth of this industry as researchers spend a lot of time and energy to find and introduce any new energy efficient manufacturing technology as a conventional heating method waste a huge amount of energy, therefore affected the environment. Introduction of microwave technique nowadays seems like a promising solution as this technology offers several advantages such as rapid processing, energy efficient process and reduced cost of operation. In addition, the microwave method also opens new edge of knowledge, especially on the interaction of this energy to the atomic structure of the starting material which could be a reason for the rising interest. Since the first report of this technology in 1971, significant and positive rising numbers of publications were shown for the past few decades. Thus, in this research, application of microwave heating was fully utilized, especially in the preparation of activated carbon and molybdenum carbide.

Recently, microwave induced activation or microwave heating has been introduced in the preparation of activated carbon. This new technology is applied as the carbonaceous material known as a microwave absorbent. Beside faster time of preparation and energy efficient method, another reason could be the intention of selecting this kind of heating method is the prepared activated carbon has a higher surface area and pore volume (Tan et al., 2008). These two properties are highly
required for the best activated carbon, therefore, microwave energy is proven to achieve this result. Thus, in this study, the activated carbon was prepared via Microwave Induced Activation technique using waste oil palm frond as a carbon source and two activation agents, which are potassium hydroxide and phosphoric acid respectively.

A number of methods were proposed for molybdenum carbide synthesis and each process has its own characteristics of powder produced; Combustion Synthesis (CS), Self-propagating High Temperature Synthesis (SHS), Direct Carburization, Field Activated combustion method. However, the major drawback of these methods is it requires long time of combustion and high energy preparation. Thus, many researchers suggested the easier, faster and energy saving ideas for transition metal carbides synthesis and microwave looks promising. (Lu et al., 2012) had successfully prepared tungsten carbide/ carbon composite by the Microwave Heating (MH) technique. This method offers numerous advantages compared to other access method, for instance, it can be rapidly synthesized in one-step process, and thus it is economical and can be synthesized at lower temperature. In addition, Kitchen et al., (2014) underlined that strong coupling of carbon with microwave is the key of success of this application. Thus, in this research, the molybdenum carbides were prepared via Microwave Induced Alloying.

TMC especially Mo$_2$C were studied for their reactivity on oxidation, hydrogen transfer reaction such as hydrogenation, isomerization, desulfurization and methanation. In this case, many researches proved that the catalytic behavior of TMCs matched and some time, exceeding the best-known precious noble metal in hydrogen transfer reaction. Compared to metal sulfides, metal carbide possesses superior hydrogen adsorption, activation and transfer capabilities, and then it has prospective application in CO hydrogenation reactions (Fang et al., 2009). Besides that, molybdenum carbide is also active in various reactions, such as decomposition of formic acid (Flaherty et al., 2010), water gas shift (WGS) react to produce hydrogen (Moon, 2009) and hydrogenation reaction (Liu et al., 2014, Xu et al., 2014, Pang et al., 2012 and Aoki et al., 2013).
Carbon dioxide, known as greenhouse gas, mainly generated from the combustion reaction of organic compound. Previously, this gas always considers as waste product as well as contributing to global warming, however, this image has turned drastically as great resources, plus business opportunity since researcher found that recycling of CO$_2$ via catalytic conversion reaction is the promising method to reduce total contents of CO$_2$ in the atmosphere and generate valuable product such as methane and methanol (Centi & Perathoner 2004, De Falco et al., 2013, Wang & Gong 2011 and Kaiser et al., 2013). On the other hand, the recycling idea opens new dimensions of research and technology regarding catalyst to handle this reaction perfectly.

In this study, Microwave Induced Alloying (MIA) is introduced using simple modified household microwave oven to prepare the activated carbon from the waste oil palm frond and also, molybdenum carbide and potassium doped molybdenum carbide. In addition, this study also explores the effect of potassium as a dopant to the properties of the molybdenum carbide as well as for the reaction. Several literature papers suggested the potassium as a dopant initiated significant influence to the surface and catalytic properties of the molybdenum carbide (Chiang et al., 2012, Kotarba et al., 2004 and Pistonesi et al., 2012). Therefore, for the preparation of potassium doped molybdenum carbide, the unwashed activated carbon prepared via potassium hydroxide were used as this preparation tends to manipulate the potassium residues which always remained as impurities in the preparation of activated carbon.

Consequently, the best prepared molybdenum carbide and potassium doped molybdenum carbide were applied as a catalyst for the hydrogenation of CO$_2$. Catalyst performance in terms of capability and reactivity to convert CO$_2$ become the Key Performances Index (KPI) to evaluate the quality of this catalyst, thus hopefully contribute to knowledge’s world.
1.2 Research Problems

This research is purposely to introduce another edge of knowledge for the preparation of the molybdenum carbide. To date, the widespread method to prepare the molybdenum carbide is the temperature-programmed reduction using hydrocarbon as a carbon source. However, Liang et al., (2002) explained that this technique has several drawbacks such as high temperature of preparation, the carburization processes must be carefully controlled, prepared carbide surface is contaminated by polymeric carbon and furthermore blocks and covers the active site. Thus, to elucidate this problem, the application of the activated carbon has been approached as a carbon source for this research. Activated carbon generally has a high surface area and well-developed pores might help in term of enhancing the surface area of the product as well as absorption capability. These two characters are obliging for this catalyst, especially this catalyst was tested to the gaseous reaction.

Secondly, there is a limited number of the published paper regarding the kinetic and thermodynamic for the carbon dioxide hydrogenation via molybdenum carbide as a catalyst. Thus, this fact opens the opportunity for this study to introduce and suggest new ideas to understand and explore this area. The majority of the published literature discussed more specific to the activity of the catalyst and proposing a kinetic model to represent their work. However, no specific links to incorporate the kinetic and thermodynamic of the reaction as these two subjects are supposed to be a connected. As the kinetic purposely to study the effectiveness of the catalyst, the thermodynamic approach is compulsory to prove this reaction is workable and conducted by the catalyst.

1.3 Research Objectives

The objectives of this research are listed below:
1. To prepare and characterize the activated carbon via Microwave Induced Alloying technique.

2. To prepare and characterize molybdenum carbide and potassium doped molybdenum carbide via Microwave Induced Alloying technique.

3. To determine the activity of nano molybdenum carbide and potassium doped molybdenum carbide in the CO\textsubscript{2} hydrogenation reaction.

4. To study the mechanism of CO\textsubscript{2} hydrogenation reaction catalyzed by prepared nano molybdenum carbide and potassium doped molybdenum carbide.

5. To analyze the kinetic and thermodynamic parameters of carbon dioxide hydrogenation via the prepared molybdenum carbide.

1.4 Research Scope

The scope of the study is divided into 4 major stages. The first stage is the preparation of activated carbon using waste oil palm frond. This stage introduced Microwave Induced Activation technique to prepare the activated carbon. At this stage, two different sources of activating agents were used, which were potassium hydroxide and phosphoric acid respectively. The prepared activated carbons were characterized using Fourier transform infrared, nitrogen gas adsorption analysis and field emission scanning electron microscope –energy dispersive X-ray.

The second stage of this research is the preparation of molybdenum carbide and potassium doped molybdenum carbide. For this stage, ammonium hepta molybdate was used as a metal precursor while the prepared activated carbons plays role as carbon sources. Selection of the activated carbon was based on highest surface area obtained by nitrogen gas adsorption analysis. Microwave induced alloying technique was introduced to substitute the conventional carburization process of preparation molybdenum carbide. For the potassium doped molybdenum carbide, the prepared potassium doped activated carbon was applied as a carbon source, which was previously activated using the known amount of the potassium hydroxide. The prepared carbon with the highest amount of potassium was applied as a carbon
precursor for the preparation of potassium doped molybdenum carbide. The physicochemical properties of the prepared molybdenum carbide and potassium doped molybdenum carbide was characterized via X-ray diffraction analysis, scanning electron microscope (SEM), temperature programmed desorption, acidic-titration method, electron spin resonance and nitrogen gas adsorption Analysis.

The third stage of this research is the prepared molybdenum carbide and potassium doped molybdenum carbide were applied as a catalyst for CO$_2$ hydrogenation. The main objectives are to find out the activity, selectivity and stabilities of the prepared molybdenum carbide and potassium doped molybdenum carbide as a catalyst for this reaction. Furthermore, the mechanism of this reaction was proposed at the end of this project.

Lastly, the kinetic and thermodynamic parameters for hydrogenation of carbon dioxide were analyzed. The analysis of kinetic employed basic graphical method to identify the reaction order and rate. In addition, the activation energy was also calculated using the Arrhenius Law. Then, for the thermodynamic analysis, the acknowledged equations, Eyring equation and van’t Hoff equation were used to calculate the thermodynamic parameters which are entropy, enthalpy and the Gibbs free energy of activation.

1.5 Significance of Research

This study expectantly can contribute to the knowledge’s world by applying the Green Chemistry principle as a main inspiration to conduct this research. To date, in the preparation of materials, researchers nowadays always find the right technique to prepare their material at the same time, try to minimize the energy required. Generally, the main problem of the heat source from the conventional oven is the heat loss to the environment could make the reaction requires more time for the heat transfers. Thus, in this research, the application of the microwave energy purposely to
REFERENCES

Jia, L., Gao, J., Fang, W., and Li, Q. (2009). Carbon Dioxide Hydrogenation to Methanol over the Pre-Reduced LaCr0.5Cu0.5O3 Catalyst. *Catalysis Communications*, 10 (15), 2000–2003.

