SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE/COPPER OXIDE CORE-SHELL HETEROJUNCTION NANOWIRES GROWN BY VAPOR DEPOSITION

MUHAMMAD ARIF KHAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST 2017
DEDICATION

Specially dedicated to my beloved parents, my family and my friends for their patience, support, prayers, encouragement, and blessings.
ACKNOWLEDGEMENT

First of all, I would like to praise and thank almighty Allah who enabled me to complete my doctorate. I thank to almighty Allah for making my dream come true. The day that I dreamt of has finally come and I am graduating my PhD.

I feel honored of being supervised by Prof. Yussof Wahab and Prof. Samsudi Sakrani. This thesis would not have been completed without their help, support and guidance. I would like to offer my sincerest gratitude and thanks to both of my supervisors who have supported me throughout my PhD studies with his patience and knowledge. Indeed, it was a great privilege to work together as a team.

I would like to express my thanks to UTM for providing me with the support of best experimental facilities needed to complete my experimental research work and thesis. My appreciation also goes to all the lecturers and laboratory officers at the Department of physics, Centre for Sustainable Nanomaterial (CSNano) Ibnu Sina Institute for Scientific and Industrial Research, and University Laboratory Management Unit (UPMU) of UTM.

I am grateful to my family, parents and parents-in-law for all their love and encouragement. They raised me with love and supported me in all my pursuits. They have been a constant source of inspiration throughout my life. I will forever be indebted to all of them for their support, encouragement and invaluable prayers.

The last but not the least heartfelt acknowledgment must go to my wife and my lovely daughter Honey. Their love, support, encouragement and patience has helped me massively throughout this period.
ABSTRACT

This thesis investigates the controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) formation by vapor deposition and oxidation approach. ZnO/CuO heterostructure nanowires were grown on n-type Si substrate using modified thermal chemical vapor deposition (TCVD) assisted by sputtering deposition followed by thermal oxidation under controlled growth conditions. The effects of fabrication parameters on structure, growth mechanism, optical and electrical properties of the ZnO/CuO core-shell heterojunction were thoroughly investigated. Structural characterization by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HR-TEM), scanning transmission electron microscope (STEM), X-ray photoelectron spectroscopcope (XPS), X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) reveals that a highly pure crystalline ZnO core and polycrystalline CuO shell were successfully fabricated in which ZnO and CuO are of hexagonal wurtzite and monoclinic structures, respectively. The growth of ZnO nanowires is along the c-axis [002] direction and the nanowires have relatively smooth surfaces with diameters in the range of 35-45 nm and lengths in the range of 700-1300 nm. The CuO nanoshell with thickness of around 8-10 nm is constructed of nanocrystals with sizes in the range of 3–10 nm. EDX spectrum, elemental mapping and high angle annular dark field (HAADF) STEM confirmed that the NW compositions were Zn, Cu and O. Photoluminescence (PL) study shows the enhancement of intensity ratio and decrease in the energy band of ZnO/CuO core-shell heterojunction NW arrays that might be very useful in photocatalysis, light emission devices and solar energy conversion applications. Similarly, UV-VIS-NIR spectroscopy study shows that the grown ZnO NW arrays have a maximum reflectance of approximately 42% in the 200 to 800 nm range while the ZnO/CuO core-shell heterojunction NW arrays have a decreased value of 24%. This means that the absorption efficiency of ZnO/CuO core-shell heterojunction nanowire arrays clearly shows a higher absorption compared to pure ZnO nanowire arrays. Besides, the good rectifying behavior of ZnO/CuO core-shell NW by conductive AFM (C-AFM) showed that p-n junction was successfully fabricated. Furthermore, from the XPS analysis, the measured values for valence band offset (VBO) and conduction band offset (CBO) were found to be 2.4 eV and 0.23 eV, respectively for the fabrication of ZnO/CuO core-shell heterojunction NWs. It was observed that ZnO/CuO core-shell heterojunction NWs have type-II band alignment. This study obviously suggests that using the controlled growth mechanism, it is possible to control crystal structure, surface morphologies and orientation of the core-shell NW arrays.
ABSTRAK

Tesis ini menyiasat pertumbuhan terkawal dan pembentukan teras-petala simpangan hetero dawai nano (NW) ZnO/CuO jajaran menegak dengan pendekatan pemendapan wap dan pengoksidaan. Dawai nano struktur hetero ZnO/CuO ditumbuhkan di atas substrat Si jenis-n menggunakan pemendapan terma wap kimia (TCVD) yang diubah suai dibantu oleh pemendapan percikan diikuti dengan pengoksidaan terma di bawah keadaan pertumbuhan terkawal. Kesin parameter fabrikasi terhadap struktur, mekanisme pertumbuhan dan sifat-sifat optik dan elektrik bagi teras-petala simpangan hetero ZnO/CuO telah disiasat dengan menyeluruh. Pencirian struktur dengan mikroskop elektron pengimbas pemancaran medan (FESEM), mikroskop elektron penghantaran resolusi tinggi (HRTEM), mikroskop elektron penghantaran imbasan (STEM), spektroskop fotoelektron sinar-X (XPS), pembelau sinar-X (XRD) dan spektroskop serakan tenaga sinar-X (EDX) menunjukkan bahawa kristal teras ZnO yang sangat tulen dan polihabluran petala CuO telah berjaya difabrikasi di mana ZnO dan CuO masing-masing adalah berstruktur heksagon wurtzite dan monoklinik. Pertumbuhan dawai nano ZnO adalah sepanjang arah paksi-c [002] dan dawai nano mempunyai permukaan yang licin dengan diameter dalam julat 35-45 nm dan dan panjang dalam julat 700-1300 nm. Petala nano CuO dengan ketebalan sekitar 8-10 nm dibina daripada nanokristal dengan saiz dalam julat 3-10 nm. Spektrum EDX, STEM pemetaan unsur dan anulus medan gelap bersudut tinggi (HAADF) dan STEM mengesahkan bahawa komposisi NW ialah Zn, Cu dan O. Kajian photoluminescence (PL) menunjukkan peningkatan nisbah keamatan dan pengurangan jalur tenaga tatasusunan NW simpangan hetero teras-petala ZnO/CuO yang berkemungkinan sangat berguna dalam aplikasi fotomangkin, peranti pemancar cahaya dan penukaran tenaga solar. Begitu juga, spektroskopi UV-VIS-NIR menunjukkan bahawa tatasusunan NW ZnO yang ditumbuhkan menghasilkan pantulan maksimum kira-kira 42% dalam julat 200-800 nm manakala tatasusunan NW simpangan hetero teras-petala ZnO/CuO telah berkurangan kepada 24%. Ini bermakna tatasusunan NW simpangan hetero teras-petala ZnO/CuO menunjukkan kecekapan penyerapan lebih tinggi berbanding tatasusunan NW ZnO tulen. Selain itu, sifat membetulkan NW teras-petala ZnO/CuO yang baik menunjukkan yang persimpangan p-n telah berjaya difabrikasi. Tambahan pula, dari analisis XPS, telah ditemui nilai diurak bagi ofset jalur valens (VBO) dan ofset jalur konduksi (CBO) masing-masing ialah 2.4 eV dan 0.23 eV, untuk fabrikasi NW simpangan hetero teras-petala ZnO/CuO. Didapati bahawa penjajaran jalur bagi NW simpangan hetero teras-petala ZnO/CuO adalah jenis-II. Kajian ini jelas menunjukkan bahawa dengan menggunakan mekanisme pertumbuhan dikawal, terdapat kemungkinan untuk mengawal struktur kristal, morfologi permukaan dan orientasi teras-petala tatasusunan NW.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 **INTRODUCTION**

1.1 Background
1
1.2 Problem Statement
4
1.3 Research Objectives
6
1.4 Scope of the Study
6
1.5 Significance of the Study
8
1.6 Organization of Thesis
8

2 **LITERATURE REVIEW**

2.1 Introduction
10
2.2 ZnO/CuO Heterostructure Nanowires
10
2.3 Zinc Oxide Material Properties
14
2.3.1 Physical Properties 14
2.3.2 Electrical Properties 16
2.3.3 Optical Properties 18
2.3.4 Structural Properties 21
2.4 Copper Oxide Material Properties 25
2.5 Junction Behaviors of ZnO/CuO 32
2.6 Growth Techniques 36
2.6.1 Vapor Transport growth 36
2.6.1.1 Vapor-Liquid-Solid (VLS); Catalyst Assisted 37
2.6.1.2 Vapor Solid (VS); Catalyst Free 40
2.6.2 Chemical Vapor Deposition (CVD) 41
2.6.3 Thermal Chemical Vapor deposition (CVD) 42
2.6.4 ZnO Thermal CVD Growth 43
2.6.5 Sputtering Technique 44
2.7 Electrical Properties of Semiconductor Nanowire 45
2.7.1 Conductive-Atomic force microscopy (CAFM) 46
2.8 Valance band offset (Energy band alignment) of the heterojunction by X-ray Photoelectron Spectroscopy 48

3 RESEARCH METHODOLOGY 50
3.1 Introduction 50
3.2 Modified Thermal Chemical Vapor Deposition System 52
3.2.1 Furnace 53
3.2.2 Digital Vacuum Gauge 53
3.2.3 Two Channel Gas Mixing Station 54
3.2.4 Vacuum Flanges and Fittings 54
3.2.5 Vacuum Pump of Thermal CVD Tube Furnace 55
3.2.6 Mass Flow Controller (MFC) 55
3.2.7 Source and Substrate Holder 55
3.2.8 Gas Supply Systems 56
3.3 Substrate Preparation 56
3.3.1 Substrate Cutting 57
3.3.2 Cleaning of Substrate 57
3.4 Synthesis of ZnO Nanowire by Thermal CVD 58
3.5 Synthesis of CuO Nanowire by Thermal Oxidation 60
3.6 High Vacuum Dual Target Sputtering System 61
3.7 Growth of ZnO/CuO Core-Shell heterojunction NW Arrays 62
3.8 Characterization Techniques 64
3.8.1 Field emission scanning electron microscope (FE-SEM) 64
3.8.2 Energy dispersive X-ray spectroscopy (EDX) 66
3.8.3 High-resolution transmission electron microscopy (HR-TEM) 67
3.8.4 X-ray photoelectron spectroscopy (XPS) 68
3.8.5 Raman Spectroscopy (RS) 70
3.8.6 X-ray diffraction (XRD) 72
3.8.7 Photoluminescence (PL) 74
3.8.8 UV–VIS NIR Reflectance spectroscopy 75
3.9 Electrical measurement (I-V Characteristic) of heterojunction nanowire by C-AFM 76

4 RESULTS AND DISCUSSION 78
4.1 Introduction 78
4.2 Structural Characterization of CuO Nanowires 79
4.2.1 Growth parameters of CuO Nanowires 79
4.2.2 Morphological Characteristics and EDX Analysis
 4.2.2.1 The effect of oxygen pressure on the formation of CuO nanowires 84
 4.2.2.2 The effect of temperature on the formation of CuO nanowires 85
4.2.3 X-ray diffraction analysis of CuO 87
4.2.4 X-ray Photoelectron Spectroscopy (XPS) analysis of CuO Nanowires 90

4.3 Structural Characterization of ZnO Nanowire Arrays 91s

4.4 Structural Characterization ZnO/CuO Heterostructure Nanowires 99

4.4.1 Morphological Characteristics 99

4.4.2 Structural and Compositional Analysis 105

4.4.3 Raman Spectroscopy Measurement Analysis 107

4.4.4 TEM images of ZnO/CuO heteronanowire 109

4.5 Optical Study

4.5.1 Photoluminescence 116

4.5.1 UV-VIS-Reflectance Spectroscopy 117

4.6 Current-voltage (I-V) characteristic of heterojunction nanowires 119

4.7 Valance band offset measurement (Energy band alignment) of ZnO/CuO heterojunction Nanowire by X-ray photoelectron spectroscopy. 122

5 CONCLUSIONS AND FUTURE WORK 128

5.1 Conclusion 128

5.2 Recommendation for Future Work 130

REFERENCES 132

Appendices A-I 147-164
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Research reported for the Fabrication of ZnO/CuO heterostructure NWs</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Some important key properties of bulk wurtzite ZnO</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Some important properties of CuO at room temperature (300 °C)</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Growth parameters of ZnO Nanowires</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Specification details of Hitachi SU8020 FE-SEM</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>Specification details of JEOL JEM-2100 electron microscope</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Specification details of Kratos axis ultra DLD Spectrometer</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Specification details of Raman Spectrometer</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Growth parameters of CuO Nanowires</td>
<td>79</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of oxygen partial pressure, changes in atom% and aspect ratio of copper oxide nanostructures</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth Parameters of CuO nanostructure shell for Fabrication of ZnO/CuO core-shell heterojunction NWs</td>
<td>103</td>
</tr>
<tr>
<td>4.4</td>
<td>Deposition parameters of ZnO/CuO Core-shell heterojunction NWs</td>
<td>120</td>
</tr>
<tr>
<td>4.5</td>
<td>Binding energies of the valence band maximum (VBM), Zn 2p3/2 and Cu 2p3/2 core-level spectra obtained from three samples</td>
<td>126</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The hexagonal wurtzite structure of ZnO [reproduced from Wikipedia]</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>I-V characteristic for different ZnO (nanostructures)/p-GaN LEDs</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic band diagram of intrinsic point defects in ZnO</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>PL spectra of ZnO NWs on Si substrates by Thermal CVD</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>PL spectra of ZnO NWs on sapphire and Si substrates</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>XRD patterns of ZnO nanostructures by thermal evaporation synthesized at different source temperatures: (a) 900 0C, (b) 975 0C, and (c) 1050 0C</td>
<td>22</td>
</tr>
<tr>
<td>2.7</td>
<td>XRD patterns of ZnO NWs by thermal CVD synthesized at temperatures 960 0C</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>XPS spectra of ZnO nanostructures (a) Zn 2p 3/2 and 1/2, (b) O1s core levels of ZnO NWs by thermal CVD synthesized at temperatures 800 0C</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>Copper oxide (CuO) monoclinic crystal structure</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Oxidation states of CuO, Cu₂O and Cu</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>Optical transmittance of CuO thin films deposited at various growth temperatures. The inset shows the absorbance spectra as a function of wavelength</td>
<td>29</td>
</tr>
<tr>
<td>2.12</td>
<td>(a) The I-V curve of the CuO nanowire measured by C-AFM (b) The plot of the positive current with V1/4 in log scale, which shows linear property</td>
<td>30</td>
</tr>
<tr>
<td>2.13</td>
<td>XRD spectra of the Cu foil after oxidation in wet air, showing: (1) very thin scale formed at 300 °C; (2) mainly Cu₂O with a small amount of CuO formed at 500 °C; and (3) only CuO formed at 800 °C</td>
<td>31</td>
</tr>
<tr>
<td>2.14</td>
<td>(a) core-level XPS spectrum of Cu2p; (b) core-level XPS of O1s for CuO samples</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>(a) Depletion layer of pn-junction (b) Energy band structure of CuO/ZnO heterojunction</td>
<td>33</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.16</td>
<td>The characteristic of a p-n junction</td>
<td>35</td>
</tr>
<tr>
<td>2.17</td>
<td>Vapor-liquid-solid (VLS) Mechanism of Zinc Oxide Nanowires</td>
<td>37</td>
</tr>
<tr>
<td>2.18</td>
<td>Au-ZnO phase diagram and its eutectic point</td>
<td>38</td>
</tr>
<tr>
<td>2.19</td>
<td>Schematic diagram illustrates that the metal oxide nanowires via vapor-solid (VS) growth mechanism</td>
<td>40</td>
</tr>
<tr>
<td>2.20</td>
<td>Thermal Chemical Vapor Deposition (CVD) System</td>
<td>43</td>
</tr>
<tr>
<td>2.21</td>
<td>Simplified diagram of the experimental setup for CAFM</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Flow Chart</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Thermal Chemical Vapor Deposition System (a) Fitting for testing of thermal CVD (b) Actual setup of thermal CVD with gasses system at CS (Nano) IIS & IR UTM</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>CVD Tube Furnace system (a) Furnace (b) Bird View</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>Alumina source (Zn) boat (b) Stainless steel rod (c) Alumina flat boat used to hold the substrate at a desired position</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Silicon substrate, diamond cutter, ruler and sample holding box</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic of thermal CVD for synthesis of ZnO Nanowires</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>Schematic set-up of thermal oxidation for synthesis of CuO nanowires</td>
<td>61</td>
</tr>
<tr>
<td>3.8</td>
<td>High Vacuum Dual Target Sputtering System (Q300T D) for deposition of copper nanofilm</td>
<td>62</td>
</tr>
<tr>
<td>3.9</td>
<td>Fabrication illustration of ZnO/CuO Core-Shell NW arrays</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>FE-SEM Machine, located at UPMU UTM (Hitachi SU8020)</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>HR-TEM machine located at CSNano Ibnu Sina, UTM (JEM-2100)</td>
<td>67</td>
</tr>
<tr>
<td>3.12</td>
<td>XPS instrument of Advance X-Ray Photoelectron Spectroscopy Laboratory located at UPMU UTM. (AXIS ULTRA DLD)</td>
<td>69</td>
</tr>
<tr>
<td>3.13</td>
<td>RAMAN Instrument of Advance Optical Microscope and Nano Raman Photoluminescence Laboratory located at UPMU UTM</td>
<td>71</td>
</tr>
<tr>
<td>3.14</td>
<td>XRD instrument in Mechanical Engineering Laboratory, UTM</td>
<td>73</td>
</tr>
<tr>
<td>3.15</td>
<td>Photoluminescence (PL) (Horiba Scientist) Laboratory located in physics Department, Faculty of Science</td>
<td>74</td>
</tr>
</tbody>
</table>
3.16 UV-VIS-NIR Scanning Spectrometer Instrument Located in Physics Department Faculty of Science UTM

3.17 Conductive AFM measurement system

3.18 Schematic setup of C-AFM for I-V measurement of ZnO/CuO heterojunction NWs

4.1 FE-SEM images of CuO nanowires thermally oxidized on copper foil substrate at temperature 400 °C for time 1h and partial pressure of oxygen 4.65 torr

4.2 High magnification FE-SEM images of CuO NWs thermally oxidized at 400 °C for time ½ h in the presence of pure oxygen of partial pressure 4.65 torr.

4.3 FE-SEM image & their EDX spectra of (a-b) Cu2O thick layer and (c, d) CuO nanowire.

4.4 (a) FE-SEM image of individual CuO NW (b – d) EDS taken from the single NW top, middle and bottom respectively (e) EDS taken from the background of CuO thin layer.

4.5 FE-SEM images of CuO nanowires thermally oxidized on copper foil substrate at temperature 400 °C for time ½ h and partial pressure of oxygen 6.2 torr.

4.6 FE-SEM images of CuO nanowires thermally oxidized on copper foil substrate at temperature 500 °C for time ½ h and partial pressure of oxygen 9.31 torr.

4.7 EDX spectrums of CuO nanowires thermally oxidized on copper foil substrate at temperature 500 °C for time ½ h and partial pressure of oxygen 9.31 torr.

4.8 XRD spectrum of Cu foil substrate after the thermal oxidation in the presence of pure oxygen at pressure 4.65 torr and temperature 400 °C for 1h.

4.9 XRD spectrum of Cu foil substrate after the thermal oxidation in the presence of pure oxygen at pressure 6.2 torr and 400 °C for ½ h.

4.10 XRD spectrum of Cu foil substrate after the thermal oxidation in the presence of pure oxygen of partial pressure 9.31 torr and temperature 500 °C for ½ h.

4.11 ((a) Wide scan XPS spectrum of CuO (b) XPS spectra of O 1s (c) XPS spectra of Cu 2p.

4.12 Low and high magnification FESEM images of vertically-align ZnO NW arrays grown on Si substrates (a) FESEM image of ZnO NWs at 3μm (b) FESEM image of ZnO NWs at 2μm (c) FESEM image of ZnO NWs at 1μm (d) FESEM image of ZnO NWs at 1μm. The inset is shown an enlarged image of ZnO nanowire
XRD OF ZnO NW arrays synthesized by Thermal CVD
(a) XPS survey spectra of ZnO NW arrays (b, c) High resolution spectra of O 1s and Zn 2p.
(a) A low-magnification TEM image of a ZnO NW (b) HRTEM image of a ZnO NW taken from the circle part of single NW shown in Figure 4.15 (a). (c) SAED pattern of the ZnO nanowire indicating the growth direction is [002] (d) EDX analysis of Pure ZnO nanowires
Raman spectra of pure ZnO NW arrays.
Photoluminescence (PL) and UV-Visible reflectance spectra are at room temperature
FE-SEM images of low magnification and high magnification respectively (a) and (b) Pure ZnO NW arrays grown on Si substrates (c) and (d) ZnO/Cu core-shell NW arrays (e) and (f) ZnO/CuO core-shell NW arrays
(a) FE-SEM images of ZnO/CuO core-shell NW arrays at 400 nm magnification and (b) EDX image.
Growth progress of the shell layer (CuO) for the ZnO/CuO core-shell nanowires and their X-ray diffraction structures as a function of sputtering deposition time of copper nanofilm for (a-b) 2 min, (c-d) 3 min and (e-f) 4 min respectively at 400 °C for 1 h at pressure 75 torr and oxygen 40 - 45 sccm flow rate.
ZnO/CuO core-shell NW arrays formed after thermal oxidation of ZnO–Cu core-shell NW arrays at 400 °C for 1h (a) Pressure 50 torr and oxygen 25-30 sccm flow rate (b) XRD for (a). (c) Pressure 75 torr and oxygen 40-45 sccm flow rate. (d) XRD for (c).
XRD spectrum of (a) Pure ZnO NW arrays (b) ZnO/Cu core-shall NW arrays and (c) ZnO/CuO core-shell NW arrays
XPS spectra of ZnO/CuO core-shell NW arrays corresponding to (a) Wide scan profile spectrum of ZnO/CuO core-shell NW arrays (b) O 1s spectrum (c) Cu 2p spectrum and (d) Zn 2p spectrum.
Raman spectra of pure ZnO and ZnO/CuO core-shell NW arrays
(a) A low-magnification TEM image of a ZnO NW (b) HRTEM image of a ZnO NW taken from the circle part of single NW shown in Figure 4.25(a). (c) SAED pattern of the ZnO nanowire indicating the growth direction is [002] (d) HRTEM image of a ZnO/CuO NW. (e) HRTEM image of a ZnO/CuO nanowire heterostructure showing the interface and shell thickness taken at the edge from
rectangle part of (d). (f) SAED pattern of the ZnO/CuO core-shell nanowire.

4.26 HRTEM image of a ZnO/CuO core-shell heterojunction NW showing the interface and shell thickness (a-b) HRTEM image taken vertically from the edge of single ZnO/CuO core-shell heterojunction NW at magnification 1 nm and 2 nm respectively (c-d) tilt HRTEM image of single ZnO/CuO core-shell heterojunction NW at magnification 1 nm and 2 nm respectively.

4.27 EDX spectrums of the NWs at different position (a) tip (b) middle and (c) bottom

4.28 (a) STEM (HAADF) image taken from one single CuO/ZnO heterojunction nanowire. (b) EDX elemental mapping of Cu (c) EDX elemental mapping of Zn (d) EDX elemental mapping of O.

4.29 EDX elemental mappings of Cu, O and Zn, respectively taken from one single p-CuO/n-ZnO heterojunction nanowire

4.30 Room temperature PL spectrum measured from (a) ZnO NWs and (b) the fabricated p-CuO/n-ZnO heterojunction nanostructure

4.31 UV–VIS-NIR light reflection of (a) ZnO NWs (b) ZnO/CuO heterojunction (sputtered 3 min) and (c) ZnO/CuO heterojunction (sputtered 4 min)

4.32 (a) Schematic of the C-AFM $I-V$ measurement, the inset is the AFM image of core-shell heterojunction nanowires (b) The $I-V$ characteristics of the n-ZnO/ p-CuO heterojunction diode (c) Semi-log $I-V$ characteristics (d) Schematic energy band diagram of the heterojunction n-ZnO/p-CuO at zero voltage bias showing energy difference from core-level

4.33 (a) and (b) HRTEM images of ZnO/CuO heterojunction NW at low and high magnification focused on the interface region showing the interface and shell thickness (c) XRD result for the as fabricated ZnO/CuO heterojunction (d) SAED pattern of the ZnO/CuO core-shell nanowire

4.34 XPS core-level (CL) and Valence-band edge (VBE) spectra (a) CL of Zn 2p$_{3/2}$ for ZnO (b) CL of Cu 2p$_{3/2}$ for CuO (c) Zn 2p$_{3/2}$ for ZnO/CuO heterojunction (d) Cu 2p$_{3/2}$ for ZnO/CuO heterojunction (e) VBE spectra for ZnO (f) VBE spectra for CuO

4.35 Schematic energy band diagram of type-II band alignment of p-CuO/n-ZnO heterojunction
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapor Deposition</td>
</tr>
<tr>
<td>CuO</td>
<td>Copper Oxide</td>
</tr>
<tr>
<td>C-AFM</td>
<td>Conductive Atomic Force Microscopy</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CBO</td>
<td>Conduction band offset</td>
</tr>
<tr>
<td>CSNano</td>
<td>Centre for Sustainable Nanomaterial</td>
</tr>
<tr>
<td>CL</td>
<td>Core-Level</td>
</tr>
<tr>
<td>E_g</td>
<td>Band gap</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>FTM</td>
<td>Film Thickness Monitor</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>HS</td>
<td>Heterostructure</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High-Resolution Transmission Electron Microscopy</td>
</tr>
<tr>
<td>I-V</td>
<td>Current-voltage</td>
</tr>
<tr>
<td>MFC</td>
<td>Mass Flow Controller</td>
</tr>
<tr>
<td>NWs</td>
<td>Nanowires</td>
</tr>
<tr>
<td>NRs</td>
<td>Nanorods</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared</td>
</tr>
<tr>
<td>O_2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapor Deposition</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>PECVD</td>
<td>Plasma Enhanced Chemical Vapor Deposition</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected Area Electron Diffraction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>STEM</td>
<td>Scanning Transmission Electron Microscopy</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>sccm</td>
<td>Standard cubic centimeter per minute</td>
</tr>
<tr>
<td>TCVD</td>
<td>Thermal Chemical Vapor Deposition</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-Violet</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra-Violet Visible</td>
</tr>
<tr>
<td>VB</td>
<td>Valance band</td>
</tr>
<tr>
<td>VBM</td>
<td>Valance Band Maximum</td>
</tr>
<tr>
<td>VBO</td>
<td>Valance band offset</td>
</tr>
<tr>
<td>VLS</td>
<td>Vapor-Liquid-Solid</td>
</tr>
<tr>
<td>VS</td>
<td>Vapor-Solid</td>
</tr>
<tr>
<td>XRD</td>
<td>X-rays Diffraction</td>
</tr>
<tr>
<td>XEDS</td>
<td>Energy Dispersive X-rays Spectroscopy</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photo-electron Spectroscopy</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc Oxide</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Absolute Temperature</td>
</tr>
<tr>
<td>n</td>
<td>Ideality Factor</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>I_S</td>
<td>Reverse saturation current</td>
</tr>
<tr>
<td>q</td>
<td>charge on electron</td>
</tr>
<tr>
<td>V</td>
<td>Applied Voltage</td>
</tr>
<tr>
<td>m</td>
<td>slope of straight line</td>
</tr>
<tr>
<td>Φ</td>
<td>Work function</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>XRD Analysis JCPDS Data for Cuprite</td>
<td>147</td>
</tr>
<tr>
<td>B</td>
<td>XRD Analysis JCPDS Data for Copper</td>
<td>149</td>
</tr>
<tr>
<td>C</td>
<td>XRD Analysis JCPDS Data for Copper Oxide</td>
<td>151</td>
</tr>
<tr>
<td>D</td>
<td>XRD Analysis JCPDS Data for Zinc Oxide</td>
<td>153</td>
</tr>
<tr>
<td>E</td>
<td>Detail Research Flow Chart</td>
<td>156</td>
</tr>
<tr>
<td>F</td>
<td>FESM & XRD</td>
<td>158</td>
</tr>
<tr>
<td>G</td>
<td>HRTEM & EDX</td>
<td>159</td>
</tr>
<tr>
<td>H</td>
<td>Fabrication illustration of ZnO/CuO Core-Shell heterojunction NW arrays</td>
<td>162</td>
</tr>
<tr>
<td>I</td>
<td>List of Publications</td>
<td>163</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

In recent years the research on one-dimensional (1D) nanostructures of different materials for their remarkable performance and properties have been increasing and has gained much attention for the device fabrication due to their size and shape dependent properties. This is the unique reason that nanostructures have exceptional properties as compare to the bulk materials properties. This is due to the dependence of the physical properties and chemical properties of one-dimensional nanostructures on size and shape. One-dimensional nanostructures, including nanowires (NWs) and nanorods (NRs) are the most studied nanomaterials for their important future application prospects. High aspect ratio, extremely large surface area as compared to volume ratio, high porosity and direct conduction path of nanowires and nanorods are the important key factors compared with other nanostructures materials. These properties of nanostructure would lead to potential use for advanced applications in photonic and nano-optoelectronics like field emission devices, nanogenerators, photovoltaics, sensing, storage devices and efficient energy conversion (Jie et al., 2010; Dhara and Giri, 2013; Sun, 2015).

Semiconductor nanowires has become one of the most active area of research within the science, engineering and technology (Fan and Lu, 2005; Yi et al., 2005;
Zhang et al., 2012; Khan and Sakrani, 2014). Many materials are under focus with the potential of developing nano-systems and their combine heterostructure. The optimization of the performance is the main challenge at the moment. The materials to be discussed are copper oxide (CuO), zinc oxide (ZnO), and their core-shell heterojunction. To grow the nanowires of these materials and their heterojunction nanowires both high temperature methods and low temperatures methods are being extensively used.

Copper oxide (CuO) is an attractive p-type material with semiconducting property of direct band gap 1.2 eV and good absorption coefficient. Due to the intrinsic, stable, direct band gap and p-type nature properties make CuO good candidate for electrical, optical, sensing, catalysts, photovoltaic and optoelectronics devices (Xu et al., 2004b; Cheng et al., 2008; Jung et al., 2011; Liang et al., 2011; Wang et al., 2011a; b; Anandan et al., 2012; Chang and Yang, 2012; Filipič and Cvelbar, 2012; Willander et al., 2012). 1D nanowires / nanorods of CuO synthesized by various growth techniques such as thermal decomposition of CuC_2O_4 precursors (Raksa et al., 2005), hydrothermal decomposition route (Kim et al., 2014), self-catalytic growth process (Chen et al., 2003), and so forth. In comparison to various synthesizing methods, thermal annealing or thermal oxidation of copper foil using hot tube vacuum thermal evaporation method is a simple, convenient, and the fast method for synthesis nanostructures. Due to large surface areas CuO NWs are greatly desirable. In CuO NWs large surface areas need to high absorption of photons for greater efficiency in photovoltaic devices (Bao et al., 2009; Kargar et al., 2013a; Pal et al., 2015), which are used for catalysis and gas-sensing (Chang and Yang, 2012). In addition CuO NWs can be potentially applicable in gas sensing, magnetic storage media, in nano-devices for catalysis and for field emitter devices (Liang et al., 2011)

Similarly Zinc Oxide (ZnO) is n-type metal oxide semiconductor and is very popular due to easiness of growing it in the nanostructure form. ZnO material possesses both semiconducting and piezoelectric properties (Cha et al., 2008; Aziz et al., 2014). ZnO due to its popular material has different growth morphology, such as nanowires, nanorods, nanotubes, nanofibers, nanospheres and nano-tetrapods, nano-
cabbage, nanocombs, nanowalls and nanoprisms (Wang, 2004). These growth morphologies have been successfully grown by different methods. Most of the techniques have high temperature and long time required for the reaction. The growth techniques of ZnO nanostructure include Hydrothermal methods (Azlinda et al., 2011), vapour-liquid-solid (VLS) technique (Zhang et al., 2012), catalysed metal Chemical Vapour Deposition (Yi et al., 2005), thermal chemical vapour deposition (Cha et al., 2008), plasma enhanced CVD (Liu, 2004), oxidation method (Khanlary et al., 2012), thermal evaporation (Suhami et al., 2014) and laser-ablation (Son et al., 2007).

ZnO nanostructures have many diverse applications in nano-optoelectronics, sensors, transducers, piezoelectric elements for nano-generators, sunscreens and biomedical science, since it is a bio-safe material (Wang, 2004; Fan and Lu, 2005; Schmidt-Mende and MacManus-Driscoll, 2007; Li et al., 2008; Pan and Zhu, 2009; Ahmad et al., 2011; Zhang et al., 2012; Wei et al., 2012; H. Asif, 2013; Sun et al., 2014; Zhan et al., 2015). The direct wide band gap of ZnO ~ 3.4 eV is suitable for optoelectronic applications due to its short wavelength. ZnO naturally exhibits n-type semiconductor, while polarity due to native defects such as oxygen vacancies and zinc interstitials. P-type doping of ZnO is still a challenging problem that is hindering the possibility of a p-n homojunction ZnO devices (Janotti and Van de Walle, 2009).

Recently the fabrication of heterostructure (HS) nanowires is being deeply studied in order to accomplishment the important properties of heterojunction of different materials. Using heterojunction nanowires approach, researchers are able to modify/improve the selective property of the oxide nanowires. Oxide nanowires are expected to have improved charge collection efficiency because of the lower interval and higher contact area between the p-type and n-type materials. ZnO NWs radial heterostructure (core-shell) have been reported using several organic/inorganic materials (Plank et al., 2008; Wang et al., 2010, 2011b; Lin et al., 2012; Dhara et al., 2013; Chu et al., 2014; Pradel et al., 2016). Several new approaches have been used for the synthesis of ZnO nanowires based on the radial heterostructures. The radial
heterostructures of ZnO NWs basically consist of core-shell nanowires, which have ZnO as a core material, while a thin layer consist of a shell as a secondary material. The thin shell layer as a secondary element has a strong impact on the properties of the nanowires; however, individual property of the shell layer is not specific. These HS shows significant improvement on certain properties, mainly photophysical properties, like absorption, electron–hole pair generation and recombination rates. Although the HS are superior for modulation of certain properties, control on the external layer and formation of high quality interface between the external material and NW are, however, challenging issues.

Consequently, there is a lot of interest in the fabrication of one dimensional (1D) ZnO/CuO core-shell heterojunction nanowires for optoelectronic and nanoelectronic devices applications. As these core-shell heterojunction nanowires are expected to have improved charge collection efficiency because of the lower interval and higher contact area between the p-type and n-type materials (Cao et al., 2012). Different techniques have been combined and developed to grow ZnO/CuO core-shell NWs heterojunction including chemical reactions from aqueous solutions (e.g. electrodeposition, hydrothermal growth), and vapor phase methods (chemical vapor deposition through vapor-liquid-solid (VLS) or vapor-solid (VS) growth mechanisms), Lithography and electrospinning processes and template-directed methods (Mieszawska et al., 2007; Fang et al., 2009; Hochbaum and Yang, 2010; Cao et al., 2012). In general, to synthesize one dimensional nanoscale heterostructures or core-shell heterostructure all these methods can be applied very carefully by manipulating the experimental growth parameters, such as source materials, pressure, temperatures and deposition time etc.

1.2 Problem Statement

Research shows that ZnO/CuO core–shell nanowire (NW) heterojunction have been studied in recent years, with emphasize generally on their synthesis and
properties which are interesting and potentially useful for developing new challenging devices due to their high interfacial area, allowing for more electron-hole formation or recombination (Wang and Lin, 2009; Wang et al., 2011b; Hsueh et al., 2012; Kargar et al., 2013b; Sun, 2015). The shell formation of copper oxide (CuO) to vertically aligned ZnO NW arrays has been reported as an especially attractive platform for opto-electronic applications because of promising p-type semiconductor having narrow band gap energy (1.2 eV) and strong absorption of the solar spectrum (Kim et al., 2014).

Different techniques have been developed to grow ZnO/CuO core-shell NWs heterojunction including chemical reactions from aqueous solutions (e.g. electrodeposition, hydrothermal growth) and chemical vapor deposition (CVD) through vapor liquid solid (VLS) or vapor-solid (VS) growth mechanisms (Wang and Lin, 2009; Liao et al., 2011; Wang et al., 2011b; Wu et al., 2013). However, these techniques have limitations to develop cost-effective and efficient nanomaterials at commercial levels. The chemical reaction method in aqueous solution needs a predeposited seed layer, and the aqueous environment tends to produce very short nanowires with low crystallinity, which is not suitable for high performance nano-devices fabrication (Zhan et al., 2015). Similarly, to grow high-crystallinity core-shell nanowires heterojunction using high-temperature methods on a Si substrate needed a layer of gold film as a catalyst (Pan et al., 2011). The usage of metal catalyst tends to make impure the final synthetic products and potentially impacting the electrical and optical performance.

The limited combined use of core-shell compositions in nanostructured materials highlights the lack of versatility in current synthetic techniques and emphasizes the need for new synthetic techniques to address unmet challenges facing the photovoltaic community. Further examination showed that less study has been available on CuO absorber layers (shell formation) synthesized by thermal oxidation of copper nanofilm by a thermal chemical vapor deposition method in a horizontal quartz glass reactor compared to widely used chemical methods. Therefore, it is of great importance to explore new approach to improve the properties of CuO shell
formation or absorber layer properties under vapor solid (VS) grown mechanism. This would be helpful to produce good p-n junction with ZnO NW arrays with controlled morphology. A modified thermal CVD followed by sputtering and thermal oxidation methods are proposed which will result in quality of the controlled growth and vertically aligned large-area ZnO/CuO core–shell nanowire (NW) heterojunction. The corresponding structural, optical, electrical and their band offsets properties are expected to improve significantly.

1.3 Research Objectives

The objectives of this research are:

i) To synthesize ZnO and CuO nanowires by thermal CVD and thermal oxidation methods respectively and measures its properties.

ii) To produce ZnO/CuO core-shell heterojunction nanowire arrays using thermal CVD followed by sputtering and thermal oxidation methods.

iii) To measure current-voltage (I-V) of this nanowire heterojunction.

iv) To measured valence band offset of ZnO/CuO heterojunction by X-ray photoelectron spectroscopy (XPS).

1.4 Scope of the Study

The scope of this research are devoted to the development of controlled growth, vertically aligned ZnO, CuO and their core-shell (ZnO/CuO) heterojunction nanowires (NWs) and investigation of structural, optical, electrical and their valance band offset measurement properties at ZnO/CuO heterointerface.
The research work has been carried out for the selected materials keeping in view of their technological importance and mainly focus on the growth of ZnO and ZnO/CuO NWs. To produce vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs), several steps are used and each step is need on benefits and boost on the information bring into being in the previous steps. These are highlighted in the experimental section. Modified thermal chemical vapor deposition (CVD) assisted sputtering techniques followed by thermal oxidation method under controlled growth conditions are employed to prepare ZnO/CuO core-shell heterojunction nanowires on n-type Si substrate. Different deposition parameters such as; sputtering deposition time, oxygen partial pressure and oxygen flow rate are applied to investigate the growth process and surface evolution of ZnO/CuO core-shell heterojunction nanowires. The morphology and crystal structure of the as-grown ZnO nanowires and core-shell heterojunction NW arrays were characterized by field emission scanning electron microscope (FESEM, SU8020, HITACHI), high-resolution transmission electron microscopy (HRTEM, TECNAI G2 20 S-TWIN, FEI 200kV) including special feature of STEM and EDX, X-ray diffractometer (XRD) (Bruker AXS D5005, Cu Kα radiation), X-ray photoelectron spectroscopy (XPS, AXIS ULTRA DLD) and Raman spectrometer (HORIBA).

The optical property of the ZnO NWs and their core-shell heterojunction NWs has been analyzed for the prepared samples at room temperature by using Photoluminescence (PL), UV visible Reflectance spectroscopy (UV-Vis-NIR Spectrometer). The electrical measurements (I-V characteristic) and rectifying behavior of ZnO/CuO core-shell heterojunction NWs about the junction development at interface were studied by Conductive Atomic Force Microscopy (CAFM). Also the energy band alignment of the core-shell heterostructure nanowire i.e valance band offset (VBO) and conduction band offset (CBO) were found experimentally from X-ray photoelectron spectroscopy.
1.5 Significance of the Study

Semiconductor nanowires are exclusively interesting having deep impact on nanoscience studies and nanotechnology application. It has been determined that one dimensional (1-D) materials exhibit remarkable nano-optoelectronic, thermal and mechanical properties as compared to bulk materials/ two dimensional thin film semiconductors. This is the unique reason that nanostructures have exceptional properties as compare to the bulk materials properties. This is due to the dependence of the physical properties and chemical properties of one-dimensional nanostructures on size and shape. Among the 1-D nanostructures, 1-D heterostructures with modulated compositions and interfaces have recently become of particular interest with respect to potential applications in nanoscale building blocks of future optoelectronic devices and systems. Consequently, there is a lot of interest in the fabrication of one dimensional (1D) ZnO/CuO core-shell heterojunction nanowires for optoelectronic and nanoelectronic devices applications. As these core-shell heterojunction nanowires are expected to have improved charge collection efficiency because of the lower interval and higher contact area between the p-type and n-type materials. The results of this dissertation research will be benefit for understanding in the properties of ZnO/CuO core-shell heterojunction nanowires to meet the requirements of using heterostructure nanowires in developing high performance opto-electronic devices.

1.6 Organization of Thesis

The complete research work of this dissertation is organized into a five-chapter. Chapter 1 begins with the introduction, followed by the research background, the statement of the research problem, research objectives, scope of the study, and significance of this research and organization of the study.
Chapter 2 presents literature survey of ZnO, CuO and their heterostructure nanowires, growth techniques including vapour transport growth, chemical vapour deposition, thermal chemical vapour deposition and physical vapour deposition. Then it’s followed by electrical properties of semiconductor nanowires by conductive AFM and valance band offset measurement by X-ray photoelectron spectroscopy for these heterostructure nanowires.

Chapter 3 is focused on the details of the experimental procedures, which cover sample preparations of ZnO and CuO NWs fabricated by thermal chemical vapour deposition (CVD) and thermal oxidation techniques respectively, while ZnO/CuO Core-Shell heterojunction nanowire arrays were fabricated on a silicon substrate through vapor-solid (VS) mechanism without using any catalyst or seed layer via thermal CVD followed by sputtering and thermal oxidation. A brief description of sample characterization is also discussed in chapter 3.

In the next Chapter 4, reports on the results and discussion of the characterization part of the synthesised nanowires (CuO, ZnO and their ZnO/CuO core-shell heterojunction NWs) are presented. To grow these nanowires and their core-shell heterojunction nanowires successfully, various growth parameter were studied. The growth mechanism were explained, and the structural, electrical, optical and their energy band offsets properties of ZnO/CuO core-shell heterojunction NWs were performed.

Finally, in chapter 5, conclusions that are evident from the work results are summarized and accompanied by a short outlook, which may boost additional efforts in this exciting and promising field.

Etgar, L., Yanover, D., Capek, R.K., Vaxenburg, R., Xue, Z., Liu, B., Nazeeruddin,

Surface Science, 253, 7848–7850.

Wang, P., Zhao, X., and Li, B. (2011) ZnO-coated CuO nanowire arrays:
fabrications, optoelectronic properties, and photovoltaic applications. *Optics express*, 19, 11271–11279.

